Concept explainers
(a)
The work done by the gravitational force on the statue.
Answer to Problem 43QAP
The work done by the gravitational force on the statue is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Formula used:
Draw a free body diagram representing the forces and apply the condition for dynamic equilibrium. Work done by a force is given by the product of the force and the displacement along the direction of force.
Calculation:
Draw the free body diagram for the forces and assume the positive direction of the x axis down the plane.
Figure 1
The gravitational force
The magnitude of the gravitational force is given by,
Resolve the gravitational force
Therefore,
The work done by the x component of the gravitational force is given by,
Substitute the known values of the variables in the above equation.
The work done by the y component of the gravitational force is given by,
Substitute the known values of the variables in the above equation.
Therefore the work done by the gravitational force is given by,
Conclusion:
Thus the work done by the gravitational force on the statue is
(b)
Work done by the Curator in pushing the statue up the incline.
Answer to Problem 43QAP
The work done by the Curator in pushing the statue up the incline is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Calculation:
The crate moves with a constant velocity, hence it is in dynamic equilibrium. The sum of the forces along the x and the y directions, independently add up to zero.
Use Fig 1, and apply the condition of equilibrium along the y axis.
From equation (3)
The magnitude of the force of friction and the normal force are related as follows:
From equation (4),
The force of friction acts along the − x axis.
Therefore,
Apply the condition of equilibrium along the x direction.
Therefore,
Use equations (2)
Substitute the known values of the variables in the above equation.
Write the expression for the work done by the Curator.
Substitute the values of the variables in the above equation.
Conclusion:
Thus the work done by the Curator in pushing the statue up the incline is
(c)
The work done by the friction force on the crate
Answer to Problem 43QAP
The work done by the friction force on the crate is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Formula used:
The work done by the
Calculation:
Use equation (5)
Substitute the known values of the variables in the equation.
Conclusion:
Thus, the work done by the friction force on the crate is
(d)
The work done by the normal force between the crate and the incline.
Answer to Problem 43QAP
The work done by the normal force between the crate and the incline is 0.
Explanation of Solution
Given:
The expressions for normal force and displacement.
Formula used:
The work done by the normal force is given by,
Calculation:
Substitute the given values of the vectors in the formula.
Conclusion:
Thus the work done by the normal force between the crate and the incline is 0.
Want to see more full solutions like this?
Chapter 6 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning