Concept explainers
(a)
The work done in the first 0.100 m by plotting a graph between F and x.

Answer to Problem 37QAP
The work done in the first 0.100 m is 0.812 J.
Explanation of Solution
Given:
The values of x and F.
x (m) | F (N) |
0.0000 | 0.00 |
0.0100 | 2.00 |
0.0200 | 4.00 |
0.0300 | 6.00 |
0.0400 | 8.00 |
0.0500 | 10.00 |
0.0600 | 10.50 |
0.0700 | 11.00 |
0.0800 | 11.50 |
0.0900 | 12.00 |
0.1000 | 12.48 |
0.1100 | 12.48 |
0.1200 | 12.48 |
0.1300 | 12.60 |
0.1400 | 12.60 |
0.1500 | 12.70 |
0.1600 | 12.70 |
0.1700 | 12.60 |
0.1800 | 12.50 |
0.1900 | 12.50 |
0.2000 | 12.50 |
0.2100 | 12.48 |
0.2200 | 9.36 |
0.2300 | 6.24 |
0.2400 | 3.12 |
0.2500 | 0.00 |
Formula used:
Using an excel sheet, a graph is plotted between F and x and the work done is calculated by determining the area under the curve for the displacement under consideration.
Calculation:
Enter the values of x and F in an excel sheet and plot a graph as shown below.
For the displacement of 0.1 s, calculate the area under the curve.
The work done during the displacement of 0.1 s is equal to area OABC.
Calculate the area of the figure OABC.
Substitute the values of the variables from the graph in the above equation.
Conclusion:
Thus, the work done in the first 0.100 m is 0.812 J.
(b)
The work done in the first 0.200 m by plotting a graph between F and x.

Answer to Problem 37QAP
The work done in the first 0.200 m is 2.06 J.
Explanation of Solution
Given:
The values of x and F.
x (m) | F (N) |
0.0000 | 0.00 |
0.0100 | 2.00 |
0.0200 | 4.00 |
0.0300 | 6.00 |
0.0400 | 8.00 |
0.0500 | 10.00 |
0.0600 | 10.50 |
0.0700 | 11.00 |
0.0800 | 11.50 |
0.0900 | 12.00 |
0.1000 | 12.48 |
0.1100 | 12.48 |
0.1200 | 12.48 |
0.1300 | 12.60 |
0.1400 | 12.60 |
0.1500 | 12.70 |
0.1600 | 12.70 |
0.1700 | 12.60 |
0.1800 | 12.50 |
0.1900 | 12.50 |
0.2000 | 12.50 |
0.2100 | 12.48 |
0.2200 | 9.36 |
0.2300 | 6.24 |
0.2400 | 3.12 |
0.2500 | 0.00 |
Formula used:
Using an excel sheet, a graph is plotted between F and x and the work done is calculated by determining the area under the curve for the displacement under consideration.
Calculation:
The F-x graph is shown below:
The work done during the displacement of 0.200 m is given by the area OABEF.
Assume an average value of Force as 12.50 N during the displacement from 0.100 m to 0.0200 m.
Substitute the values of the variables from the graph in the above equation.
Conclusion:
Thus, the work done in the first 0.200 m is 2.06 J.
(c)
The work done during the displacement from 0.100 m to 0.200 m by plotting a graph between F and x.

Answer to Problem 37QAP
The work done during the displacement from 0.100 m to 0.200 m is 1.25 J.
Explanation of Solution
Given:
The values of x and F.
x (m) | F (N) |
0.0000 | 0.00 |
0.0100 | 2.00 |
0.0200 | 4.00 |
0.0300 | 6.00 |
0.0400 | 8.00 |
0.0500 | 10.00 |
0.0600 | 10.50 |
0.0700 | 11.00 |
0.0800 | 11.50 |
0.0900 | 12.00 |
0.1000 | 12.48 |
0.1100 | 12.48 |
0.1200 | 12.48 |
0.1300 | 12.60 |
0.1400 | 12.60 |
0.1500 | 12.70 |
0.1600 | 12.70 |
0.1700 | 12.60 |
0.1800 | 12.50 |
0.1900 | 12.50 |
0.2000 | 12.50 |
0.2100 | 12.48 |
0.2200 | 9.36 |
0.2300 | 6.24 |
0.2400 | 3.12 |
0.2500 | 0.00 |
Formula used:
Using an excel sheet, a graph is plotted between F and x and the work done is calculated by determining the area under the curve for the displacement under consideration.
Calculation:
The F-x graph is shown below:
The work done during the displacement from 0.100 m to 0.200 m is given by the area BEFC.
Assume an average value of Force as 12.50 N during the displacement from 0.100 m to 0.0200 m.
Substitute the values of the variables from the graph in the above equation.
Conclusion:
Thus, the work done during the displacement from 0.100 m to 0.200 m is 1.25 J.
(d)
The work done during the entire motion

Answer to Problem 37QAP
The work done during the entire motion
Explanation of Solution
Given:
The values of x and F.
x (m) | F (N) |
0.0000 | 0.00 |
0.0100 | 2.00 |
0.0200 | 4.00 |
0.0300 | 6.00 |
0.0400 | 8.00 |
0.0500 | 10.00 |
0.0600 | 10.50 |
0.0700 | 11.00 |
0.0800 | 11.50 |
0.0900 | 12.00 |
0.1000 | 12.48 |
0.1100 | 12.48 |
0.1200 | 12.48 |
0.1300 | 12.60 |
0.1400 | 12.60 |
0.1500 | 12.70 |
0.1600 | 12.70 |
0.1700 | 12.60 |
0.1800 | 12.50 |
0.1900 | 12.50 |
0.2000 | 12.50 |
0.2100 | 12.48 |
0.2200 | 9.36 |
0.2300 | 6.24 |
0.2400 | 3.12 |
0.2500 | 0.00 |
Formula used:
Using an excel sheet, a graph is plotted between F and x and the work done is calculated by determining the area under the curve for the displacement under consideration.
Calculation:
The F-x graph is shown below:
The work done during the entire displacement is given by the area OABEG.
Substitute the values of the variables from the graph in the above equation.
Conclusion:
Thus, the work done during the entire motion
Want to see more full solutions like this?
Chapter 6 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





