Displacement, distance, and position Consider an object moving along a line with the following velocities and initial positions. Assume time t is measured in seconds and velocities have units of m/s. a. Over the given interval, determine when the object is moving in the positive direction and when it is moving in the negative direction. b. Find the displacement over the given interval. c. Find the distance traveled over the given interval. d. Determine the position function s ( t ) using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check your answer by finding the position function using the antiderivative method. 3. v ( t ) = 12 t 2 − 30 t + 12 , for 0 ≤ t ≤ 3 ; s ( 0 ) = 1
Displacement, distance, and position Consider an object moving along a line with the following velocities and initial positions. Assume time t is measured in seconds and velocities have units of m/s. a. Over the given interval, determine when the object is moving in the positive direction and when it is moving in the negative direction. b. Find the displacement over the given interval. c. Find the distance traveled over the given interval. d. Determine the position function s ( t ) using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check your answer by finding the position function using the antiderivative method. 3. v ( t ) = 12 t 2 − 30 t + 12 , for 0 ≤ t ≤ 3 ; s ( 0 ) = 1
Displacement, distance, and position Consider an object moving along a line with the following velocities and initial positions. Assume time t is measured in seconds and velocities have units of m/s.
a. Over the given interval, determine when the object is moving in the positive direction and when it is moving in the negative direction.
b. Find the displacement over the given interval.
c. Find the distance traveled over the given interval.
d. Determine the position function s(t) using the Fundamental Theorem of Calculus (Theorem 6.1). Check your answer by finding the position function using the antiderivative method.
3.
v
(
t
)
=
12
t
2
−
30
t
+
12
, for
0
≤
t
≤
3
;
s
(
0
)
=
1
5.
mit answer
urces
Use Simpson's Rule and all the data in the
following table to estimate the value of the
31
integral f(x) dx.
25
25 26 27 28 29 30 31
f(x) 4 44 4 -9 -2 9 2
5
(Round your answer to within two decimal
places if necessary, but do not round until
your final computation.)
Simpson's Rule Approximation:
PROGRES
Score
Completi
30
i
Submit answer
T
The
Weather
Channel
UP
DELL
FB
F4
F5
F9
9.
F10
Help
need help
Chapter 6 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.