Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 22. v ( t ) = 1 t + 1 on [ 0 , 8 ] ; s ( 0 ) = − 4
Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 22. v ( t ) = 1 t + 1 on [ 0 , 8 ] ; s ( 0 ) = − 4
Solution Summary: The author explains the position function of an object by anti-derivative method and the fundamental theorem of calculus.
Position from velocity Consider an object moving along a line with the given velocity v and initial position
a. Determine the position function, for t ≥ 0, using the antiderivative method
b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus (Theorem 6.1). Check for agreement with the answer to part (a).
22.
v
(
t
)
=
1
t
+
1
on
[
0
,
8
]
;
s
(
0
)
=
−
4
Find the (exact) direction cosines and (rounded to 1 decimal place) direction angles of = (3,7,6)
Let a = (-1, -2, -3) and 6 = (-4, 0, 1).
Find the component of b onto a.
Forces of 9 pounds and 15 pounds act on each other with an angle of 72°.
The magnitude of the resultant force
The resultant force has an angle of
pounds.
* with the 9 pound force.
The resultant force has an angle of
with the 15 pound force.
It is best to calculate each angle separately and check by seeing if they add to 72°.
Chapter 6 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.