Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 3LTL
To determine
The kind of spectrum expected by nebula to produce.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You observe an object’s spectrum and you find that it has a flat spectrum in lambda: its flux density is equal to flambda=2.0E-15 erg cm-2 s-1 A-1 at all wavelengths across the visible spectrum. What is the frequency (in Hz) corresponding to wavelength 4000 Angstroms, and wavelength 8000 Angstroms? What is the flux density fnu of this object at each of those two frequencies, in units of erg cm-2 s-1 Hz-1?
lambdamax = 600nm (5000K/T) L ∝ R2 T 4 1. What is the peak wavelength of an O star of temperature 50,000 K? What range of the spectrum is this?
a) The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in your calculation. Look up any required information about the star using Wikipedia. Use sensible approximations so your calculation is straightforward. For example you could consider only the region of the spectrum where the photon flux peaks.
b) The Mid-Infrared Instrument (MIRI, camera and spectrograph) on the James Webb Space Telescope operates in the band 5 – 28 µm. For 58 Eridani, approximately how many photons per second can be used by this instrument? Assume that MIRI takes all the photons from the full JWST mirror. Show all steps in your calculation. Describe briefly two or three other factors which play a role in determining the sensitivity of an instrument such as MIRI?
Chapter 6 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Prob. 5RQCh. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - Prob. 10RQ
Ch. 6 - Prob. 11RQCh. 6 - How Do We Know? How is the world you see around...Ch. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - If one star has a temperature of 6000 K and...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 1LTLCh. 6 - Prob. 2LTLCh. 6 - Prob. 3LTLCh. 6 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Would you expect to be able to detect an H II region in X-ray emission? Why or why not? (Hint: You might apply Wien’s law)arrow_forwardStar X has lines of ionized helium in its spectrum, and star Y has bands of titanium oxide. Which is hotter? Why? The spectrum of star Z shows lines of ionized helium and also molecular bands of titanium oxide. What is strange about this spectrum? Can you suggest an explanation?arrow_forwardPlease solve accurate. Thanksarrow_forward
- Consider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.arrow_forwardA)The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in calculation . B) The Mid-infared Instrument (MIRI , camera and spectrograph ) on the James Webb Space Telescope operates in the band 5-28 µm . For 58 Eridani , approximatley how many photons per second can be used by this instrument ? Assume that MIRI takes all the photons from the full JWST mirror . Show all steps in calcultation . Describe breifly two or three other factors which play a role in determining the sensetivitu of an instrument such as MIRI ?arrow_forwardthe glowing gas cloud shown below contains mostly hydrogen excited to emit photons. What kind of spectrum would you expect this gas cloud to produce?arrow_forward
- 1 Solar constant, Sun, and the 10 pc distance! The luminosity of Sun is + 4- 1026 W - 4- 1033ergs-1, The Sun is located at a distance of m from the Earth. The Earth receives a radiant flux (above its atmosphere) of F = 1365W m- 2, also known as the solar constant. What would have been the Solar contact if the Sun was at a distance of 10 pc ? 1AU 1 1.5-+ 1011arrow_forwardPlease send me answer of this question immediately.i will give you like sure sir.arrow_forwardanswer for 3arrow_forward
- Consider two stars, A and B, of equal size. You take a spectrum of each star and findthat the flux of star A peaks at a wavelength of 9000 ̊ A and the flux of star B peaksat 3000 ̊ A. What is the relative luminosities of the two stars? Which star is the hotterone? If star A is at a distance of 10 pc, what distance would star B have to be inorder for both stars to appear equally bright as viewed from Earth?arrow_forwardHow does one go about question b?arrow_forwardImagine that you are observing a star and you find the wavelength of peak emission for the star to be 500 nm. What would the wavelength of peak emission be for a new star that has a surface temperature that is a third of the original star?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning