The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 3LL
To determine
The location of the primary optical element and the behaviour of the element and the reason for it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following pairings of telescope diameter and observational wavelength would give the best resolution images of an object with a telescope? Explain why you chose the telescope and wavelength combination you did, and calculate the angular resolution you could achieve with it.
It would be best to observe with...
Option 1: a 10 m diameter optical telescope on the ground with λ= 550 nm
Option 2: a 2.4 m diameter optical telescope in space with λ=500 nm
Option 3: a 100 m radio telescope on the ground with λ=100 cm
You want to create a telescope with a resolving powe
of 0.100 arc seconds at a wavelength of 550 nm. Wha
diameter (in m) do you need?
If you want to increase the light gathering power by a
factor of 10, by what factor does the diameter need to
increase?
What would the new resolving power be (in arc
seconds)?
A telescope is focused to infinity. The lenses of the telescope are +1.5 and +15 diopters. What is the length of this telescope?
Chapter 6 Solutions
The Solar System
Ch. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Does red light have a higher or lower energy than...Ch. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - Prob. 10RQ
Ch. 6 - Prob. 11RQCh. 6 - Prob. 12RQCh. 6 - Prob. 13RQCh. 6 - Prob. 14RQCh. 6 - Prob. 15RQCh. 6 - Prob. 16RQCh. 6 - Prob. 17RQCh. 6 - Prob. 18RQCh. 6 - Prob. 19RQCh. 6 - Prob. 20RQCh. 6 - Prob. 21RQCh. 6 - Prob. 22RQCh. 6 - Prob. 23RQCh. 6 - Prob. 24RQCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - What is the frequency and wavelength of an FM...Ch. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 1SPCh. 6 - Prob. 2SPCh. 6 - Prob. 2LLCh. 6 - Prob. 3LLCh. 6 - Prob. 4LLCh. 6 - Prob. 5LLCh. 6 - Prob. 6LLCh. 6 - Prob. 7LLCh. 6 - Prob. 8LL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Many decades ago, the astronomers on the staff of Mount Wilson and Palomar Observatories each received about 60 nights per year for their observing programs. Today, an astronomer feels fortunate to get 10 nights per year on a large telescope. Can you suggest some reasons for this change?arrow_forwardTheoretically (that is, if seeing were not an issue), the resolution of a telescope is inversely proportional to its diameter. How much better is the resolution of the ALMA when operating at its longest baseline than the resolution of the Arecibo telescope?arrow_forwardWhen astronomers discuss the apertures of their telescopes, they say bigger is better. Explain why.arrow_forward
- The HST cost about $1.7 billion for construction and $300 million for its shuttle launch, and it costs $250 million per year to operate. If the telescope lasts for 20 years, what is the total cost per year? Per day? If the telescope can be used just 30% of the time for actual observations, what is the cost per hour and per minute for the astronomer’s observing time on this instrument? What is the cost per person in the United States? Was your investment in the Hubble Space telescope worth it?arrow_forwardTelescopes can now be operated remotely from a warm room, but until about 25 years ago, astronomers worked at the telescope to guide it so that it remained pointed in exactly the right place. In a large telescope, like the Palomar 200-inch telescope, astronomers sat in a cage at the top of the telescope, where the secondary mirror is located, as shown in Figure 6.6. Assume for the purpose of your calculation that the diameter of this cage was 40 inches. What fraction of the light is blocked? Figure 6.6 Focus Arrangements for Reflecting Telescopes. Reflecting telescopes have different options for where the light is brought to a focus. With prime focus, light is detected where it comes to a focus after reflecting from the primary mirror. With Newtonian focus, light is reflected by a small secondary mirror off to one side, where it can be detected (see also Figure 6.5). Most large professional telescopes have a Cassegrain focus in which light is reflected by the secondary mirror down through a hole in the primary mirror to an observing station below the telescope.arrow_forwardThe James Webb Telescope is an important innovation in Astronomy and its implementation was first explained to the public during the timeline of our course this summer. Prepare an explanation which includes the following: What is the James Webb Telescope? Include a description of the tool itself and a brief history. What is the importance/significance of this tool for future astronomical studies?arrow_forward
- The James Webb Space Telescope has a primary mirror of diameter ? = 6.5metres. When observing at 1100nm wavelength, calculate the minimum angular separation between two stars which can just be resolved; give your answer in arcseconds (arcsec), where 1 arcsec = 1/3600 degree, to 3 decimal places.arrow_forwardwhat advantages does a catadioptric telescope have over a reflecting telescope? what is its disadvantages?arrow_forwardThe Giant Magellan Telescope is a new telescope being built in Chile with a mirror 25 meters in diameter. Part 1: If you neglect the impact of Earth's atmosphere, what is the angular resolution limit (diffraction limit or resolving power) of this telescope in green light (500 nm)? Give your answer in arcseconds. Part 2: The current Magellan telescope has a mirror 6 meters in diameter. How much more light per second will the Giant Magellan capture compared to the current Magellan?arrow_forward
- How does the resolving power of the Mount Palomar 5-m telescope compare with that of the 2.4-m Hubble Space Telescope? AMount Palomar dHubble Space Telescope Why does HST generally still outperform the ground-based 5-m telescope? The resolving power of the Mount Palomar 5-m telescope has a higher value than that of HST, and telescopes with higher values for resolving power can not distinguish objects as well as telescopes with lower values for resolving power. Earth's atmosphere affects visibility for the Mount Palomar 5-m telescope and limits resolving power to about 0.5 seconds of arc. HST is not affected by distortion due to the atmosphere. The resolving power of the Mount Palomar 5-m telescope has a lower value than that of HST, and telescopes with lower values for resolving power can not distinguish objects as well as telescopes with higher values for resolving power. HST is in orbit around the Earth, and so it is closer to the stars than the Mount Palomar 5-m telescope. By being…arrow_forwardCompare the highest resolution attainable with optical telescopes to the highest resolution attainable with radio telescopes (including interferometers).arrow_forwardCan you please assist with Part 2 of 5?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax