Predict/Calculate You want to nail a 1.6-kg board onto the wall of a barn. To position the board before nailing, you push it against the wall with a horizontal force F → to keep it from sliding to the ground ( Figure 6-50 ) (a) If the coefficient of static friction between the board and the wall is 0.79, what is the least force you can apply and still hold the board in place? (b) What happens to the force of static friction if you push against the wall with a force greater than that found in part (a)? Figure 6-50 Problem 33
Predict/Calculate You want to nail a 1.6-kg board onto the wall of a barn. To position the board before nailing, you push it against the wall with a horizontal force F → to keep it from sliding to the ground ( Figure 6-50 ) (a) If the coefficient of static friction between the board and the wall is 0.79, what is the least force you can apply and still hold the board in place? (b) What happens to the force of static friction if you push against the wall with a force greater than that found in part (a)? Figure 6-50 Problem 33
Predict/Calculate You want to nail a 1.6-kg board onto the wall of a barn. To position the board before nailing, you push it against the wall with a horizontal force
F
→
to keep it from sliding to the ground (Figure 6-50) (a) If the coefficient of static friction between the board and the wall is 0.79, what is the least force you can apply and still hold the board in place? (b) What happens to the force of static friction if you push against the wall with a force greater than that found in part (a)?
Figure 6-50
Problem 33
Definition Definition Force that opposes motion when the surface of one item rubs against the surface of another. The unit of force of friction is same as the unit of force.
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.