Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μ s = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μ s = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μs = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Definition Definition Force that opposes motion when the surface of one item rubs against the surface of another. The unit of force of friction is same as the unit of force.
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.