a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
Solution Summary: The author explains how the collision involves a perfectly inelastic collision because after collision the skaters retain in contact.
a man of mass m1 = 70.0 kg is skating at v1 = 8.00 m/s behind his wife of mass m2 = 50.0 kg, who is skating at v2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m1, v1, m2, v2, and final velocity vf. (d) Solve the momentum equation for vf. (e) Substitute values, obtaining the numerical value for vf, their speed after the collision.
In a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.
In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.