a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
Solution Summary: The author explains how the collision involves a perfectly inelastic collision because after collision the skaters retain in contact.
a man of mass m1 = 70.0 kg is skating at v1 = 8.00 m/s behind his wife of mass m2 = 50.0 kg, who is skating at v2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m1, v1, m2, v2, and final velocity vf. (d) Solve the momentum equation for vf. (e) Substitute values, obtaining the numerical value for vf, their speed after the collision.
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.