a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
a man of mass m 1 = 70.0 kg is skating at v 1 = 8.00 m/s behind his wife of mass m 2 = 50.0 kg, who is skating at v 2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m 1 , v 1 , m 2 , v 2 , and final velocity v f . (d) Solve the momentum equation for v f . (e) Substitute values, obtaining the numerical value for v f , their speed after the collision.
Solution Summary: The author explains how the collision involves a perfectly inelastic collision because after collision the skaters retain in contact.
a man of mass m1 = 70.0 kg is skating at v1 = 8.00 m/s behind his wife of mass m2 = 50.0 kg, who is skating at v2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m1, v1, m2, v2, and final velocity vf. (d) Solve the momentum equation for vf. (e) Substitute values, obtaining the numerical value for vf, their speed after the collision.
9.
Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds.
Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.
In the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.