
Concept explainers
To determine: The main events that occur during glycolysis.
Introduction: Glycolysis is a series of 10 enzyme-catalyzed reactions where one molecule of glucose is converted to two molecules of pyruvate. In this process, the total production of 2 ATP molecules and the reduction of 2 NAD+ to 2 NADH molecules occur.

Explanation of Solution
The main events that occur during glycolysis are as follows:
In Reaction 1 of glycolysis, a phosphoryl group is transferred from ATP to glucose to form glucose-6-phosphate (G6P) in a catalytic reaction that is continued by hexokinase. In this reaction, kinase acts as an enzyme that transfers the phosphoryl groups between ATP and a metabolite. The metabolite serves as the phosphoryl group acceptor.
Reaction 1:
Reaction 2 of glycolysis explains the conversion of glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) in the presence of phosphoglucose isomerase (PGI). This reaction represents isomerization of an aldose to a
Reaction 2:
In Reaction 3 of glycolysis, phosphofructokinase (PFK) phosphorylates fructose-6-phosphate (F6P) to form fructose-1,6-bisphosphate (FBP).
Reaction 3:
In Reaction 4 of the glycolysis pathway, aldolase catalyzes the cleavage of fructose-1,6-bisphosphate to form the two trioses, namely, glyceraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate. This represents the carbon–carbon cleavage that occurs in retro-aldol condensation. The cleavage occurs in-between C3 and C4 of fructose-1,6-bisphosphate.
Reaction 4:
Reaction 5 represents the products of the aldol cleavage reaction, where glyceraldehyde-3-phosphate is converted to dihydroxyacetone phosphate. In this reaction, interconversion occurs by an isomerization reaction with an enediol intermediate. Triose phosphate isomerase catalyzes this process in this reaction of glycolysis.
Reaction 5:
Reaction 6 of glycolysis represents the oxidation and phosphorylation of glyceraldehyde-3-phosphate (GAP) in the presence of NAD+ and Pi as catalyzed by glyceraldehyde-3-phosphate dehydrogenase to form 1,3-Bisphosphoglycerate.
Reaction 6:
Reaction 7 of the glycolysis pathway yields ATP with 3-phosphoglycerate (3GP) in a reaction that is catalyzed by the enzyme phosphoglycerate kinase (PGK). In this reaction, reverse phosphorylation occurs in the presence of kinase. From 1,3-Bisphosphoglycerate, one phosphate group is transferred to 3-phosphoglycerate (3GP) and ATP.
Reaction 7:
Reaction 8 of glycolysis represents the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate in the presence of phosphoglycerate mutase. This reaction also represents the isomerization reaction.
Reaction 8:
Reaction 9 of glycolysis explains the dehydration reaction in which 2-phosphoglycerate is dehydrated to phosphoenolpyruvate (PEP) in a reaction that is catalyzed by enolase.
Reaction 9:
In the final reaction, Reaction 10 of glycolysis, pyruvate kinase enhances phosphoenolpyruvate in the presence of ADP to form pyruvate and ATP. The pyruvate kinase reaction is highly exergonic such that it gives more energy to drive ATP synthesis, a substrate-level phosphorylation reaction.
Reaction 10:
Want to see more full solutions like this?
Chapter 6 Solutions
Laboratory Topics in Botany
- If PCR was performed on the fragment of DNA shown below using "5'-TAGG-3" and "3'-TCTA-5'" as the primers, how many base pairs long would the PCR product be? To help with this, remember the antiparallel structure of DNA and that primers are complementary and antiparallel to the target sequence that they bind to. Hint: Check out the 5' and 3' labels....they are important! 3’- T A T C C G A C A A T C G A T C G A T T G C C T T C T A A -5’ 5’- A T A G G C T G T T A G C T A G C T A A C G G A A G A T T – 3’arrow_forwardWhen setting up a PCR reaction to act as a negative control for the surface protein A gene... Which primers will you add to the reaction mix? mecA primers, spa primers, mecA primers and spa primers, no primers What will you add in place of template? sterile water, MRSA DNA, Patient DNA, S. aureus DNAarrow_forwardDraft a science fair project for a 11 year old based on the human body, specifically the liverarrow_forward
- You generate a transgenic mouse line with a lox-stop-lox sequence upstream of a dominant-negative Notch fused to GFP. Upon crossing this mouse with another mouse line expressing ectoderm-specific Cre, what would you expect for the phenotype of neuronal differentiation in the resulting embryos?arrow_forwardHair follicle formation is thought to result from a reaction-diffusion mechanism with Wnt and its antagonist Dkk1. How is Dkk1 regulated by Wnt? Describe specific cis-regulatory elements and the net effect on Dkk1 expression.arrow_forwardLimetown S1E4 Transcript: E n 2025SP-BIO-111-PSNT1: Natu X Natural Selection in insects X + newconnect.mheducation.com/student/todo CA NATURAL SELECTION NATURAL SELECTION IN INSECTS (HARDY-WEINBERG LAW) INTRODUCTION LABORATORY SIMULATION A Lab Data Is this the correct allele frequency? Is this the correct genotype frequency? Is this the correct phenotype frequency? Total 1000 Phenotype Frequency Typica Carbonaria Allele Frequency 9 P 635 823 968 1118 1435 Color Initial Frequency Light 0.25 Dark 0.75 Frequency Gs 0.02 Allele Initial Allele Frequency Gs Allele Frequency d 0.50 0 D 0.50 0 Genotype Frequency Moths Genotype Color Moths Released Initial Frequency Frequency G5 Number of Moths Gs NC - Xarrow_forward
- Which of the following is not a sequence-specific DNA binding protein? 1. the catabolite-activated protein 2. the trp repressor protein 3. the flowering locus C protein 4. the flowering locus D protein 5. GAL4 6. all of the above are sequence-specific DNA binding proteinsarrow_forwardWhich of the following is not a DNA binding protein? 1. the lac repressor protein 2. the catabolite activated protein 3. the trp repressor protein 4. the flowering locus C protein 5. the flowering locus D protein 6. GAL4 7. all of the above are DNA binding proteinsarrow_forwardWhat symbolic and cultural behaviors are evident in the archaeological record and associated with Neandertals and anatomically modern humans in Europe beginning around 35,000 yBP (during the Upper Paleolithic)?arrow_forward
- Describe three cranial and postcranial features of Neanderthals skeletons that are likely adaptation to the cold climates of Upper Pleistocene Europe and explain how they are adaptations to a cold climate.arrow_forwardBiology Questionarrow_forward✓ Details Draw a protein that is embedded in a membrane (a transmembrane protein), label the lipid bilayer and the protein. Identify the areas of the lipid bilayer that are hydrophobic and hydrophilic. Draw a membrane with two transporters: a proton pump transporter that uses ATP to generate a proton gradient, and a second transporter that moves glucose by secondary active transport (cartoon-like is ok). It will be important to show protons moving in the correct direction, and that the transporter that is powered by secondary active transport is logically related to the proton pump.arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education





