Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 27EP
Reconsider Prob. 6-26E. Using appropriate software, investigate
the effect of the splitter angle on the force exerted on the splitter in the incoming flow direction. Let the half splitter angle vary from 0° to 180°in increments of 10°. Tabulate and plot your results, and draw some conclusions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A small three (3) blade turbine with 10 meter long blades is shut down due to wind speeds being
35 m/s. The turbine has a brake on the low speed shaft rotor to keep the rotor from spinning in
these circumstances. However, a maintenance man accidentally sets the blades to have an
angle of attack of 10 degrees against the incoming wind when the rotor is facing into the wind.
The blades have a constant chord of 0.5 meters, and have CI = 2TTA where a is measure in
radians. Assume also that the air density is 1.25 kg/m³. Approximately how much torque must
the brake restrain?
At what maximum speed does a compressed air torpedo move, which expells 18 kg of air every second at a speed of 118 m/s? The force of water resistance is proportional to the square of the velocity and is equal to 480 N at a speed of 21 m/s. (The solutiom is 44 m/s)
Two uniform parts of a homogeneous cylinder with a diameter
of R = 0.2m and a mass of m lkg moved as shown in the
figure and then collided head-on and stuck to form a cylinder
and continued its movement by rotating with o = 10 rad/s.
Which of the following choices is the final velocity vector and
energy loss of the cylinder? (1linder
= MR?)
Chapter 6 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...Ch. 6 - Two firefighters are fighting a fire with...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - Water enters a 7-cm-diameter pipe steadily with a...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - Prob. 33PCh. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Prob. 36PCh. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - Prob. 39PCh. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - Prob. 44PCh. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - A room is to be ventilated using a centrifugal...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 49CPCh. 6 - Prob. 50CPCh. 6 - Prob. 51CPCh. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 53EPCh. 6 - The impeller of a centrifugal pump has inner and...Ch. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - Prob. 56PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 58PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 62PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - An 8-cm-diameter horizontal water jet having a...Ch. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - A 16-cm diameter horizontal water jet with a speed...Ch. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - A 5-cm-diameter horizontal jet of water, with...Ch. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 79EPCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - A horizontal water jet of constant velocity V...Ch. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Water enters a mixed flow pump axially at a rate...Ch. 6 - Prob. 88PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - A water jet strikes a moving plate at velocity...Ch. 6 - Water flows at mass flow rate m through a 90°...Ch. 6 - Prob. 97PCh. 6 - Water shoots out of a Iar2e tank sitting a cart...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 113PCh. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please also explain.arrow_forwardHello sir Muttalibi is a step solution in detailing mathematics the same as an existing step solution EXAMPLE 6-1 Momentum-Flux Correction Factor for Laminar Pipe Flow CV Vavg Consider laminar flow through a very long straight section of round pipe. It is shown in Chap. 8 that the velocity profile through a cross-sectional area of the pipe is parabolic (Fig. 6-15), with the axial velocity component given by r4 V R V = 2V 1 avg R2 (1) where R is the radius of the inner wall of the pipe and Vavg is the average velocity. Calculate the momentum-flux correction factor through a cross sec- tion of the pipe for the case in which the pipe flow represents an outlet of the control volume, as sketched in Fig. 6-15. Assumptions 1 The flow is incompressible and steady. 2 The control volume slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15. Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte- grate, noting that dA, = 2ar dr, FIGURE 6–15 %3D Velocity…arrow_forwardHello, professor, solved in a detailed way, the same solution, steps, but it is a detailed solution for mathematics. EXAMPLE 6-3 The Force to Hold a Reversing Elbow in Place The deflector elbow in Example 6-2 is replaced by a reversing elbow such that the fluid makes a 180° U-turn before it is discharged, as shown in Fig. 6-21. The elevation difference between the centers of the inlet and the exit sections is still 0.3 m. Determine the anchoring force needed to hold the elbow in place. SOLUTION The inlet and the outlet velocities and the pressure at the inlet of the elbow remain the same, but the vertical component of the anchoring force at the connection of the elbow to the pipe is zero in this case (FR = 0) since there is no other force or momentum flux in the vertical direction (we are neglecting the weight of the elbow and the water). The horizontal com- ponent of the anchoring force is determined from the momentum equation written in the x-direction. Noting that the outlet…arrow_forward
- Nadeen is washing her car, using a nozzle similar to the one sketched in Fig. 4-8. The nozzle is 3.90 in (0.325 ft) long, with an inlet diameter of 0.420 in (0.0350 ft) and an outlet diameter of 0.182 in (see Fig. 4–9). The volume flow rate through the garden hose (and through the nozzle) is V = 0.841 gal/min (0.00187 ft/s), and the flow is steady. Estimate the magnitude of the acceleration of a fluid particle moving down the centerline of the nozzle.arrow_forwardUsing the first three terms of the series for f in = compare 114 75 4 1 375 8 11! 7" +16141 127,897 A¹² 77¹ the approximate velocity profile with the exact solution. Also calculate the local skin-friction coefficient, the displacement thickness, and the momentum thickness from the approximate expression for f. 7=0: f = 0, =0 n = ∞: = 1 dnarrow_forwardA long circular cylinder rotates at a constant angular velocity of 100 rad/s while subjected to a uniform cross flow of air at a velocity of 15 m/s as shown. If the density of the air is 1.20 kg/m², find the lift per unit length of cylinder. y U= 15 m/s @ = 100 rad/s R = 0.25 m airarrow_forward
- Fluid Mechanics Problem The clamping forces on a horizontal pipe-bend are measured to be 1050 N in positive x-direction and 850 N in positive y-direction. Calculate the "one time lossfactor K" for the pipe-bend based on the velocity in the narrow part of the pipe-bends beginning which is 2 m/s. The pipe diameter at the beginning of the bend is 15 cm and 25 cm at the end of the bend. There is water that flows through the pipe-bend with temperature 20 degrees Celcius.arrow_forwardA jet of water flows from left to right and hits a splitter block, as shown in the figure. Some of the jet is diverted upwards and some of it downwards. The incoming jet has a velocity U₁ = 2.3 m/s and a cross-sectional area A₁ The jet that is deflected upwards has a velocity U₂ = 0.7 m/s, a cross-sectional area A₂ = 11 cm² and is at an angle 0₂ = 30° with respect to the horizontal. The jet that is deflected downwards has a velocity U3 = 0.9 m/s, a cross-sectional area A3 = 8 cm² and is at an angle 03 = 25° with respect to the horizontal. The density of water is p = 1000 kg/m³. U₁ A₁ A₂z A3 a) Find the cross-sectional area of the incoming jet (in cm²) U₂ 0₂ 0₂ b) Find the horizontal force on the block (in Newtons) (Note: remember to convert the area of the jets from cm² to m²!) Из c) The vertical force on the block found to be F. What velocity of the incoming jet (i.e. what value of u₁) would be needed t generate a force of 4F,? (Note that you don't need to actually find F, to solve…arrow_forwardA 98% efficient ESP is to treat a gas stream flowing at 5000 m3/ min. If the effective drift velocity is 6.0 cm/s, calculate the number of plates if each plate is 6 m hy 10 m, and there are 3 mechanical fields.arrow_forward
- Sketch the appropriate diagram and derive the Von-Karman momentum equation. Explain the concept of this equation.arrow_forwardI need the answer as soon as possiblearrow_forwardConsider a potential flow describing a uniform flow around a cylinder. What is the force on the cylinder (per unit length of the cylinder) that comes from the upstream half of the cylinder? Answer it terms of the upstream velocity Uo, fluid density p, and cylinder radius a? You may take the upstream pressure po to be 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY