Concept explainers
Draw the products of homolysis or heterolysis of each indicated bond. Use electronegativity
differences to decide on the location of charges in the heterolysis reaction. Classify each
carbon reactive intermediate as a radical, carbocation, or carbanion.
a.b.
(a)
Interpretation: The products of homolysis or heterolysis of the indicated bond is to be drawn by using the electronegativity differences. Each carbon reactive intermediate is to be classified as a radical, carbocation, or carbanion.
Concept introduction: In organic chemistry, the formation of carbocation or carbanion occurs due to the heterolysis or homolysis process. Carbocations possess six electrons around them, whereas carbanions possess the lone pair of electrons. Carbocation behaves as electrophile due to lack of electrons and incomplete octet.
Answer to Problem 26P
In the given indicated bond, homolysis takes place that results in the formation of the radicals.
The first product is,
The second product is,
Explanation of Solution
The heterolysis does not take place in the given compound due to the less electronegativity difference between atoms.
The product of homolysis is shown below.
Figure 1
In the above reaction, cyclohexane forms cyclohexyl radical and hydrogen radical by homolysis. Homolysis is opposite to the heterolysis. It forms radical with unpaired electron because the electrons are not attracted toward one element in the homolysis.
In the given indicated bond, homolysis takes place that results in the formation of the radical. The product of homolysis is shown in Figure 1.
(b)
Interpretation: The products of homolysis or heterolysis of the indicated bond is to be drawn by using the electronegativity differences. Each carbon reactive intermediate is to be classified as a radical, carbocation, or carbanion.
Concept introduction: In organic chemistry, the formation of carbocation or carbanion occurs due to the heterolysis or homolysis process. Carbocations possess six electrons around them, whereas carbanions possess the lone pair of electrons. Carbocation behaves as electrophile due to lack of electrons and incomplete octet.
Carbanion behaves as a nucleophile in the chemical reaction due to the presence of excess electrons. Heterolysis is the process in which unequal sharing of electrons results in the breaking of the bond.
Answer to Problem 26P
In the given indicated bond, heterolysis takes place that results in the formation of the carbocation.
The first product is,
The second product is,
Explanation of Solution
Heterolysis in the compound takes place due to the more electronegativity difference. The product of heterolysis is shown below.
Figure 2
In the above reaction, ethanol forms ethyl carbocation and hydroxide ion by heterolysis. The heterolysis in the chemical reaction leads to the formation of ionic species because electrons are attracted toward more electronegative atom. Oxygen is more electronegative than carbon. Therefore, heterolysis and the formation of carbocation take place in the reaction.
In the given indicated bond, heterolysis takes place that results in the formation of the carbocation. The product of heterolysis is shown in Figure 2.
Want to see more full solutions like this?
Chapter 6 Solutions
Organic Chemistry (6th Edition)
- Differentiate between single links and multicenter links.arrow_forwardI need help on my practice final, if you could explain how to solve this that would be extremely helpful for my final thursday. Please dumb it down chemistry is not my strong suit. If you could offer strategies as well to make my life easier that would be beneficialarrow_forwardNonearrow_forward
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning