EP PHYSICS -MOD.MASTERING (18W)
5th Edition
ISBN: 9780136782490
Author: Walker
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 25PCE
In Figure 6-42 we see two blocks connected by a string and tied to a wall. The mass of the lower block is 1.0 kg, the mass of the upper block is 2.0 kg. Given that the angle of the incline is 31°, find the tensions in (a) the string connecting the two blocks and (b) the string that is tied to the wall.
Figure 6-42
Problem 25
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A book of mass m, = 1.6 kg is stacked on another book of mass m2 = 2.8 kg, which
rests on a friction-less smooth table, If the coefficient of friction between the blocks is
u =0.1, Then the maximum force that can be applied to m2 so that m, may not slide is:
m,
m2
88 In Fig. 6-59, block 1 of mass m = 2.0 kg and block 2 of mass
m2 = 1.0 kg are connected by a string of negligible mass. Block 2 is
pushed by force F of magnitude 20 N and angle 0= 35°.The coef-
%3D
%3D
%3D
ficient of kinetic friction between each block and the horizontal
surface is 0.20. What is the tension in the string?
Fig. 6-59 Problem 88.
In Fig. 6-59, block 1 of mass m1 ? 2.0 kg and block 2 of mass m2 ? 1.0 kg are connected by a string of negligible mass. Block 2 is pushed by force F of magnitude 20 N and angle u ? 35°. The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string? (please don't copy-paste solution)
Chapter 6 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Ch. 6.1 - A block rests on a rough, horizontal surface, as...Ch. 6.2 - When a mass is attached to a certain spring, the...Ch. 6.3 - Suppose the tension in the clothesline in Quick...Ch. 6.4 - Three boxes are connected by ropes and pulled...Ch. 6.5 - A system consists of an object with mass m and...Ch. 6 - A clothesline always sags a little, even if...Ch. 6 - In the Jurassic Park sequel, The Lost World, a man...Ch. 6 - When a traffic accident is investigated, it is...Ch. 6 - In a car with rear-wheel drive, the maximum...Ch. 6 - A train typically requires a much greater distance...
Ch. 6 - Give some everyday examples of situations in which...Ch. 6 - At the local farm, you buy a flat of strawberries...Ch. 6 - It is possible to spin a bucket of water in a...Ch. 6 - Water sprays off a rapidly turning bicycle wheel....Ch. 6 - Can an object be in translational equilibrium if...Ch. 6 - Prob. 11CQCh. 6 - The gravitational attraction of the Earth is only...Ch. 6 - A popular carnival ride has passengers stand with...Ch. 6 - Referring to Question 13, after the cylinder...Ch. 6 - Your car is stuck on an icy side street. Some...Ch. 6 - The parking brake on a car causes the rear wheels...Ch. 6 - BIO The foot of your average gecko is covered with...Ch. 6 - Discuss the physics involved in the spin cycle of...Ch. 6 - The gas pedal and the brake pedal are capable of...Ch. 6 - In the movie 2001: A Space Odyssey, a rotating...Ch. 6 - When rounding a corner on a bicycle or a...Ch. 6 - Predict/Explain You push two identical bricks...Ch. 6 - Predict/Explain Two drivers traveling side-by-side...Ch. 6 - A 1.8-kg block slides on a horizontal surface with...Ch. 6 - A child goes down a playground slide with an...Ch. 6 - What is the minimum horizontal force F needed to...Ch. 6 - What is the minimum horizontal force F needed to...Ch. 6 - The three identical boxes shown in Figure 6-33...Ch. 6 - To move a large crate across a rough floor, you...Ch. 6 - Predict/Calculate A 37-kg crate is placed on an...Ch. 6 - Coffee To Go A person places a cup of coffee on...Ch. 6 - A mug rests on an inclined surface, as shown in...Ch. 6 - Predict/Calculate Force Times Distance At the...Ch. 6 - Prob. 13PCECh. 6 - A certain spring has a force constant k. (a) If...Ch. 6 - A certain spring has a force constant k. (a) If...Ch. 6 - Pulling up on a rope you lift a 7.27-kg bucket of...Ch. 6 - When a 9.09-kg mass is placed on top of a vertical...Ch. 6 - Predict/Calculate A backpack full of books...Ch. 6 - Two springs, with force constants k1= 150N/m and...Ch. 6 - Predict/Calculate Illinois Jones is being pulled...Ch. 6 - Predict/Calculate A spring with a force constant...Ch. 6 - A spring is suspended vertically from the ceiling...Ch. 6 - Mechanical Advantage The pulley system shown in...Ch. 6 - Pulling the string on a bow back with a force of...Ch. 6 - In Figure 6-42 we see two blocks connected by a...Ch. 6 - BIO Traction After a skiing accident, your leg is...Ch. 6 - Two blocks are connected by a string, as shown in...Ch. 6 - Predict/Calculate The system shown in Figure 6-45...Ch. 6 - Predict/Explain (a) Referring to the hanging...Ch. 6 - BIO Spiderweb Forces An orb-weaver spider sits in...Ch. 6 - A 0.15-kg ball is placed in a shallow wedge with...Ch. 6 - Predict/Calculate A picture hangs on the wall...Ch. 6 - Predict/Calculate You want to nail a 1.6-kg board...Ch. 6 - Prob. 34PCECh. 6 - In Example 6-13 (Connected Blocks), suppose m1 and...Ch. 6 - Predict/Explain Suppose m1 and m2 in Example 6-14...Ch. 6 - Three boxes of masses m, 2m, and 3m are connected...Ch. 6 - Find the acceleration of the masses shown in...Ch. 6 - Predict/Calculate (a) If the hanging mass m3 in...Ch. 6 - Two blocks are connected by a string, as shown in...Ch. 6 - Predict/Calculate A 3 50-kg block on a smooth...Ch. 6 - Predict/Calculate A 7.7-N force pulls horizontally...Ch. 6 - Predict/Calculate (a) Find the magnitude of the...Ch. 6 - A car drives with constant speed on an elliptical...Ch. 6 - A puck attached to a string undergoes circular...Ch. 6 - BIO Bubble Net Fishing Humpback whales sometimes...Ch. 6 - When you take your 1900-kg car out for a spin, you...Ch. 6 - BIO A Human Centrifuge To test the effects of high...Ch. 6 - A car goes around a curve on a road that is banked...Ch. 6 - Clearview Screen Large ships often have circular...Ch. 6 - Predict/Calculate (a) As you ride on a Ferris...Ch. 6 - Driving in your car with a constant speed of v =...Ch. 6 - CE If you weigh yourself on a bathroom scale at...Ch. 6 - CE BIO Maneuvering a Jet Humans lose consciousness...Ch. 6 - CE BIO Gravitropism As plants grow, they tend to...Ch. 6 - BIO Human-Powered Centrifuge One of the hazards of...Ch. 6 - Predict/Calculate A 9 3-kg box slides across the...Ch. 6 - A child goes down a playground slide that is...Ch. 6 - Spin-Dry Dragonflies Some dragonflies splash down...Ch. 6 - The da Vinci Code Leonardo da Vinci (1452-1519) is...Ch. 6 - A 4 5-kg sled is pulled with constant speed across...Ch. 6 - A 0 045-kg golf ball hangs by a string from the...Ch. 6 - A physics textbook weighing 22 N rests on a desk....Ch. 6 - Predict/Calculate The blocks shown in Figure 6-64...Ch. 6 - A Conical Pendulum A 0 075-kg toy airplane is tied...Ch. 6 - A tugboat tows a barge at constant speed with a...Ch. 6 - Predict/Calculate Two blocks, stacked one on top...Ch. 6 - Predict/Calculate In a daring rescue by helicopter...Ch. 6 - Predict/Calculate A light spring with a fore...Ch. 6 - Predict/Calculate The blocks in Figure 6-69 have...Ch. 6 - Predict/Calculate Playing a Violin The tension in...Ch. 6 - Predict/Calculate A 9 8-kg monkey hangs from a...Ch. 6 - As your plane circles an airport, it moves in a...Ch. 6 - At a playground, a 22-kg child sits on a spinning...Ch. 6 - A 2.0-kg box rests on a plank that is inclined at...Ch. 6 - A wood block of mass m rests on a larger wood...Ch. 6 - A hockey puck of mass m is attached to a string...Ch. 6 - Predict/Calculate A popular ride at amusement...Ch. 6 - A Conveyor Belt A box is placed on a conveyor belt...Ch. 6 - As part of a circus act, a person drives a...Ch. 6 - On the straight-line segment II in Figure 6-76 (b)...Ch. 6 - 82. Rank the straight segments I, II, and III in...Ch. 6 - In use on a typical human nose, the end-to-end...Ch. 6 - Predict/Calculate Referring to Example 6-3 Suppose...Ch. 6 - Predict/Calculate Referring to Example 6-3 The...Ch. 6 - Referring to Example 6-13 Suppose that the mass on...Ch. 6 - Referring to Example 6-15 (a) At what speed will...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How does the organism Prochlorococcus contribute to both the carbon and oxygen cycles in the oceans?
Brock Biology of Microorganisms (15th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A book of mass m, = 1.8 kg is stacked on another book of mass m2 = 2.8 kg, which rests on a friction-less smooth table, If the coefficient of friction between the blocks is u =0.3, Then the maximum force that can be applied to m2 so that m, may not slide is: m1 m2 F Answerarrow_forwardA horizontal force of 200 N is used to push a 50.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, the coefficient of kinetic friction between the crate and surface.arrow_forwardIf the coefficient of friction between a 40.0 kg crate and the floor is 0.680, (a) what horizontal force must a worker exert to just start the motion of the crate? (b) If the worker maintains that force once the crater starts to move and the coefficient of kinetic friction between the surfaces is 0.500, what would happen to the crate?arrow_forward
- If the coefficient of friction between a 40.0 kg crate and the floor is 0.680, (a) what horizontal force must a worker exert to just start the motion of the crate? (b) If the worker maintains that force once the crate starts to move and the coefficient of kinetic friction between the surfaces is 0.500, what would happen to the crate?arrow_forwardIn Fig. 6-45, a 1.34 kg ball is connected by means of two massless strings, each of length L = 1.70 m, to a vertical, rotating rod. The strings are tied to the rod with separation d = 1.70 m and are taut. The tension in the upper string is 35 N. What are the (a) tension in the lower string, (b) magnitude of the net force on the ball, and (c) speed of the ball? (d) What is the direction of ?arrow_forward2) As shown below, a passenger pulls on the suitcase that has a mass M, with a force of 30.0 N and displaces the suitcase horizontally 10.0 m. The angle between F and the horizontal is 30°. The coefficient of kinetic friction HK = 0.45 Force and displacement are not in the same direction; here W = FAx. Ar (b) The force that the passenger applies to the suitcase is not in the same direction as the displacement of the suitcase, so we have to find the "piece" or "component" of the force vector F that is in the same direction as the displacement. In other words, we must find F, = Fcos0, where 0 is the angle between the two vectors, F and Fx a. If 0 = 30°, what work is done on the suitcase by the passenger? b. What is the work done on the suitcase by friction? (remember that we can always express the force due to kinetic friction as follows: f = HgN; so now that we have the force we can find the work done by multiplying this force by the displacement. Be careful --- the normal force is NOT…arrow_forward
- 4-54. The spool has a mass of 200 kg and rests against the wall and on the floor. If the coefficient of static friction at B is (4)e = 0.3, the coefficient of kinetic friction is (He)B = 0.2, and the wall is smooth, determine the friction force developed at B when the vertical force applied to the cable is P= 80 N. 0.4 m 0.1 marrow_forwardA 5.0-kg crate is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.5, the maximum force that can be applied parallel to the plane without moving the crate is: (А) 3.3 N (в) 21 N C) 46 N D) 55 Narrow_forwardIn Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 6- 28, the magnitude F required of the cord’s force on the sled is plotted versus a range of values for the coefficient of static friction ms between sled and plane: F1 = 2.0 N, F2 = 5.0 N, and m2 = 0.50. At what angle u is the plane inclined?arrow_forward
- Block A in Fig. 6-56 has mass mA = 4.0 kg, and block B has mass mB 2.0 kg.The coefficient of kinetic friction between block B and the horizontal plane is mk= 0.50.The inclined plane is frictionless and at angle u= 30°.The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.arrow_forwardA 2.20 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 4.83 N and a vertical force are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are µs = 0.4 and µk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of is (a) 8.00 N and (b) 12.0 N. (The upward pull is insufficient to move the block vertically.)arrow_forward8-63. Determine the smallest force P that will cause impending motion. The crate and wheel have a mass of 50 kg and 25 kg, respectively. The coefficient of static friction between the crate and the ground is , = 0.2, and between the wheel and the ground, = 0.5. *8-64. Determine the smallest force P that will cause impending motion. The crate and wheel have a mass of 50 kg and 25 kg. respectively. The coefficient of static friction between the crate and the ground is , = 0.5, and between the wheel and the ground μ = 0.3. O O O 127 10 L C A 300 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY