
A skier starts at the top of a hill. On which run does her gravitational potential energy change the most (a), (b), (c), or (d), or are they (e) all the same? On which run would her speed at the bottom be the fastest if the runs are icy and we assume no friction or air resistance? Recognizing that there is always some friction, answer the above two questions again. List your four answers now.

The path on which the gravitational potential energy changes the most when there is no friction and the skier will have the maximum speed.
Answer to Problem 1OQ
Solution:
All paths undergo the same amount of gravitational potential energy change. Skier will have same speed at the bottom for all the paths.
All paths undergo the same amount of gravitational potential energy change. Skier will have the greatest speed for the shortest path C.
Explanation of Solution
Force of gravity is a conservative force hence, the work done by force of gravity does not depend on the path but on the initial and final position, since in each path initial and final position is same. Hence, each path undergoes the same amount of gravitational potential energy change.
As the skier travels down, the potential energy converts to kinetic energy. Since the change in potential energy is same for each path, the change in kinetic energy is also same for each path. Hence, skier gains the same amount of speed through each path.
Force of gravity is a conservative force hence the work done by force of gravity does not depend on the path but on the initial and final position, since in each path they are same. Hence, each path undergoes the same amount of gravitational potential energy change.
As the skier travels down, the potential energy converts to kinetic energy and work done by frictional force. the change in potential energy is same for each path, but the work done by frictional force depends on the length of the path. Larger the length, larger is the energy lost to friction. So, only a small portion of potential energy converts to kinetic energy. smaller the length, smaller is the energy lost to friction. So, a large portion of potential energy converts to kinetic energy and skier gains larger speed.
Conclusion:
The change in gravitational potential energy for each path comes out to be same.
The speed at the bottom comes out to be same for each path.
The change in gravitational potential energy for each path comes out to be same.
The speed at the bottom comes out to be greatest for the shortest path C.
Want to see more full solutions like this?
Chapter 6 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Microbiology: An Introduction
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Campbell Biology (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- For number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forwardShow work using graphing paperarrow_forward
- Can someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forwardIn the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forward
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





