Concept explainers
To explain:
Why there are infinitely many rational numbers between any two rational numbers.
Answer to Problem 1NT
Solution:
Yes, there are infinitely many rational numbers between any two rational numbers.
Explanation of Solution
Given:
There are infinitely many rational numbers between any two rational numbers.
Approach:
Use denseness property of rational numbers.
Calculation:
Suppose there are two rational numbers
where
By denseness property of rational numbers, we can find a rational number
Want to see more full solutions like this?
Chapter 6 Solutions
Problem Solving Approach to Mathematics for Elementary School Teachers, A, Plus MyLab Math -- Access Card Package (12th Edition)
- Hyperbolic function - Home work Q₁ show that: d (sechu) = -sechu.tanu. Ju dx Q3 show that: coth x = 1 / m² ( x + 1 | Q2 Proof that: d (sechu) = du -(054<1) u√F-4 dx In 1871 X7/1 X-1 Que Proof that: cost'x= | | x+√x=1/.. Qs show that: sinh (A+B) = SinhA. cosh B + Cosh A. sinh B Q6 Find dy, if y = x** +++ Q7 Solve; e-edxarrow_forwardQ6 cons dy= x^" [ x + x^ (1+/mx)/mx] dx Q7) aus. In (cash/ + F Qs) AMS. 252 cosh ++c +A Q₁) aus. e + A Q10) ans. + + C ams. Qu) Q₁2) ans. QIN 941. - cschx -2 csche + A dy da = 2arrow_forwardSketch the region of the integral dy dx. Write an equivalent double integral with the order of integration reversed. Do not solve the integral.arrow_forward
- g Ske Find the area of the region bounded by the parabola x = 2y- y² + 1 and the line y = x + 1arrow_forward- | العنوان For the volume of the region in the first octant shown in the adjacent Figure. It is bounded by the coordinates planes, the plane: y = 1-x, and the surface:z = cos(лx/2), 0 ≤x≤1 Find the limits of integration for the two iterated integrals below: dz dx dy and dy dz dx Then find the volume of this region by only one of the above two iterated integrals. = cos(x/2) of y=1-xarrow_forwardFor the volume of the region in the first octant shown in the adjacent Figure. It is bounded by the coordinates planes, the plane: y = 1-x, and the surface:z = cos(лx/2), 0 ≤x≤1 Find the limits of integration for the two iterated integrals below: dz dx dy and dy dz dx Then find the volume of this region by only one of the above two iterated integrals. cos(x/2)/ y 1-xarrow_forward
- 4. [10 marks] Let T be the following tree: Find a graph G whose block graph BL(G) is isomorphic to T. Explain why your answer is correct.arrow_forward5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University