
In this chapter, we have learned about the
suppose it is hypothesized that it requires more energy to remove an electron from a metal that has atoms with one or more half-filled shells than from those that do not.
- Design a series of experiments involving the photoelectric effect that would test the hypothesis.
- What experimental apparatus would be needed to test the hypothesis? Its not necessary that you name actual equipment but rather that you imagine how the apparatus would work-think in terms of the types of measurements that would be needed, and what capability you would need in your apparatus.
- Describe the type of data you would collect and how you would analyze the data to see whether the hypothesis were correct.
- Could your experiments be extended to test the hypothesis for other parts of the periodic table, such as the lanthanide or actinide elements?

Interpretation: The experiments, apparatus and the type of data to test the given hypothesis is to be determined.
(a) A series of experiment involving the photoelectric effect that would test the hypothesis needs to be designed.
(b) The experimental apparatus required to test the given hypothesis should be determined.
(c)The type of data required to conclude whether the given hypothesis is correct or not should be determined.
(d) If the given hypothesis can be tested on lanthanides or actinides or not should be identified.
Concept Introduction: The light falls on the surface of the metal and results in the ejection of electron form its surface. This process is known as the photoelectric effect.
Answer to Problem 1DE
Solution: (a) When the light incident on the metal plate having one or more half-filled orbital; one does not observe the collection of electrons on the collector plate. But as the energy increases the electrons started collecting on the collector plate. This proves the given hypothesis.
(b) The experimental apparatus to study the photoelectric effect consists of the metal plate, collector plate, battery and voltmeter.
(c) The plot of stopping potential as a function of frequency is used to conclude that the given hypothesis is correct.
(d) The given hypothesis is not applicable on lanthanides and actinides because of the presence of d and f orbitals.
(a)
Explanation of Solution
The hypothesis says that that it requires more energy to remove an electron from the metal that has one or more half filled shells.
The ejection of electrons from the metal surface is tested by using the photoelectric effect by considering the apparatus consists of the metal plate on which the light is incident and the collector plate on which the electrons get collected. These two plates are connected to the electric circuit consists of battery, photodiode with amplifier and the voltmeter with reverse voltage.
When the light incident on the metal plate having one or more half filled orbital; one does not observed the collection of electrons on the collector plate. But as the energy increases the electrons starting collecting on the collector plate. This proves the given hypothesis.
(b)
Explanation:
The apparatus to study the photoelectric effect has the following parts,
- A photodiode with an amplifier.
- A digital voltmeter with reverse voltage.
- Batteries to operate amplifier and to provide reverse voltage.
- A monochromatic light source.
- The incident light beam intensity must adjust using a neutral filter.
The apparatus for testing the given hypothesis is shown below:
Figure 1
(c)
Explanation:
The data of frequency and wave length of different light source is collected and it is used in the apparatus of photoelectric effect. The different percentage transmission values as the function of intensity will be observed. The plot of stopping potential as a function of frequency will be observed from this data which conclude whether the hypothesis is correct or not.
(d)
Explanation:
The given hypothesis says that more energy is required to eject the electron form a metal having half filled orbitals as compared to those who have not. But the orbital of lanthanides and actinides are diffused in nature and they are larger in size. Therefore, they can easily accept and eject electrons by using lower energy radiation. Therefore, the given hypothesis cannot be tested on the lanthanides and actinides.
- The ejection of electrons is tested by using the apparatus consists of metal plate and collector plate.
- The experimental apparatus to study the photoelectric effect consists of the metal plate, collector plate, battery and voltmeter.
- The plot of stopping potential as a function of frequency is used to conclude that the given hypothesis is correct.
- The given hypothesis is not applicable on lanthanides and actinides because of the presence of d and f orbitals.
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry: The Central Science (14th Edition)
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology (11th Edition)
Living By Chemistry: First Edition Textbook
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- The following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward(ME EX2) Prblms Can you please explain problems to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Experiment #8 Electrical conductivity & Electrolytes. Conductivity of solutions FLINN Scientific Scale RED LED Green LED LED Conductivity 0 OFF OFF 1 Dim OFF 2 medium OFF 3 Bright Dim Low or Nowe Low Medium High 4 Very Bright Medium nd very high AA Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ SE=Strong Electrolyte, FE = Fair Electrolyte CWE = Weak Electrolyte, NE= Noni Electrolyte, #Solutions 1 0.1 M NaCl 2/1x 102 M NaCl, 3/1X103 M Nall Can Prediction M Observed Conductivity Very bright red Bright red Dim red you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAA Darrow_forward(SE EX 2) Prblsm 4-7: Can you please explain problems 4-7 and color code if needed for me. (step by step) detail explanationsarrow_forward(SE EX 2) Problems 8-11, can you please explain them to me in detail and color-code anything if necessary?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





