A student is given a sample of a pink manganese
a. What was the mass of the hydrate sample?
b. What is the mass of the anhydrous
c. How much water was driven off?
d. What is the percent by mass of water in the hydrate?
e. How many grams of water would there be in
f. How many grams of
g. How many moles of water are present per mole
h. What is the formula of the hydrate?
(a)
Interpretation:
The mass of the hydrated sample of pink manganese
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The mass of the hydrated sample of pink manganese
Explanation of Solution
The sum of the masses of crucible, cover, and sample of a pink manganese
The sum of the masses of crucible and cover
The mass of hydrate can be calculated by the difference between these two mass.
The mass of hydrate is given by the formula as shown below.
Substitute the value of
Therefore, the mass of the hydrate is
The mass of the hydrated sample of pink manganese
(b)
Interpretation:
The mass of the anhydrous
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The mass of the anhydrous
Explanation of Solution
The sum of the masses of crucible, cover, and sample of an anhydrous manganese
The sum of the masses of crucible and cover
The anhydrous
The mass of the anhydrous
Substitute the value of
Therefore, the mass of the anhydrous
The mass of the anhydrous
(c)
Interpretation:
The mass of water released from the hydrated sample of
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The mass of water released from the hydrated sample of
Explanation of Solution
The mass of the anhydrous
The mass of the hydrated sample of pink manganese
The mass of water released on heating can be given by the formula as shown below.
Substitute the mass of hydrate and mass of anhydrate in the above equation.
Therefore, the mass of water released from the hydrated sample is
The mass of water released from the hydrated sample is calculated as
(d)
Interpretation:
The percent by mass of water in the hydrate of
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The percent by mass of water in the hydrate of
Explanation of Solution
The mass of water released from the hydrated sample is
The mass of the hydrated sample of pink manganese
The percent by mass of water in the hydrate is given by the expression as shown below.
Substitute the values of the mass of water and mass of hydrate in the sample in the above equation.
Therefore, the percent by mass of water in the hydrate is
The percent by mass of water in the hydrate is calculated as
(e)
Interpretation:
The mass of water and the number of moles of water in
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The mass of water and the number of moles of water in
Explanation of Solution
The percent by mass of water in the hydrate is
The molar mass of
The number of moles of a substance is given by the expression as shown below.
Where,
•
•
Substitute the values of mass and molar mass of water in the above equation.
Therefore, the number of moles of water in
The mass of water and the number of moles of water in
(f)
Interpretation:
The mass of water and the number of moles of
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The percent by mass of water in the
Explanation of Solution
The mass of the anhydrous
The mass of the hydrated sample of pink manganese
The percent by mass of
Substitute the values of the mass of
The percent by mass of water in the
The molar mass of
The number of moles of a substance is given by the expression as shown below.
Where,
•
•
Substitute the values of the mass and molar mass of
Therefore, the number of moles of
The percent by mass of water in the
(g)
Interpretation:
The number of moles of water present per mole
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The number of moles of water present per mole
Explanation of Solution
The number of moles of
The number of moles of water in
The number of moles of water present per mole
Substitute the value of the number of moles of water and the number of moles of
Therefore, the number of moles of water present per mole
The number of moles of water present per mole
(h)
Interpretation:
The formula of hydrate of
Concept introduction:
The water of crystallization is the number of water molecules present in crystals compounds. The water of crystallization is also known as the water of hydration. The water molecules present in the crystal helps the crystal to impart color. These water molecules can be easily removed from the crystal by heating them.
Answer to Problem 1ASA
The formula of hydrate is
Explanation of Solution
The given sample is a pink manganese
The number of moles of water present per mole
Therefore, the formula of hydrate is
The formula of hydrate is
Want to see more full solutions like this?
Chapter 6 Solutions
CHM 111/112 LAB MANUAL >C<
- Three reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forwardIron can be extracted from the iron(III) oxide found in iron ores (such as haematite) via an oxidation-reduction reaction with carbon. The thermochemical equation for this process is: 2 Fe2O3(s) + 3 C(s) → 4 Fe(l) + 3 CO2(9) ΔΗ = +467.9 kJarrow_forwardafter doing part a and b, please offer a simple explanation to why these two values might be different.arrow_forward
- Balance the following reaction. The charge on Cu in CuS is 2+. You may add additional phases but not components to achieve this. Show your working out. CuS(s) + HNO3(aq) --> CuSO4(s) + NO(g)arrow_forward100.0 g of a ground mineral sample consisting of a mixture of MgCO₃ (magnesite) and BaCO₃ (witherite) was heated to completely convert the carbonates to their metal oxides. After the reaction 57.35 g of the metal oxide mixture was obtained. What was the mass of MgCO₃ in the original sample?arrow_forwardWrite a balanced equation for this process. Liquid potassium (k) is reacted with solid aluminium oxide (Al2O3) and potassium oxide(K2O) dust is produced.arrow_forward
- A sample of ultrapure silicon was reacted with excess oxidizing yielding SiO2. After properfiltration and drying, the precipitate weighed 3.1754 g. If ultrapure silicon is 99.98% Si, what massof sample was used?arrow_forwardPlease reply with work shown and right answer...thank you!!arrow_forwardMarble is composed primarilyarrow_forward
- What physical properties, other than specific heat, could you use to help you identify the metal sample?arrow_forwardA dimensional analysis setup to determine the mass of Fe that can be fully oxidized by 8.93 grams of O2 is shown. Explain what is incorrect in this setup and how to fix the setup to make it correct. 4Fe + 30, → 2Fe,03 1 mole O2 3 mole O, 55.847gFe 8.93go, x 31.998gO, 1 mole Fe gFe 4 mole Fe ----arrow_forwardWhy, do you think, the sulfur extracted during the Frasch process is 99.5% - 99.9% pure? Why can’t they guarantee that it is always 99.9% pure? What impurities may there be?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning