![CHM 111/112 LAB MANUAL >C<](https://www.bartleby.com/isbn_cover_images/9781337310956/9781337310956_largeCoverImage.gif)
Concept explainers
A student attempted to identify an unknown compound by the method used in this experiment. She found that when she heated a sample weighing
a. Is the sample a carbonate?
Yes / no (Circle one)
Please provide reasoning below.
b. What are the two compounds that might be in the unknown?
c. Write the balanced chemical equation for the overall reaction that occurs when each of these two original compounds is converted to a chloride. If the compound is a hydrogen carbonate, use the sum of Reactions
d. How many moles of the chloride salt would be produced from one mole of the original compound?
e. How many grams of the chloride salt would be produced from one molar mass of the original compound?
If a sodium salt,
If a potassium salt,
f. What is the theoretical value of
if she has the
g. What was the observed value of
h. Which compound did she have as an unknown?
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
Whether the unknown compound is a carbonate or not is to be stated. The explanation for the corresponding answer is to be stated.
Concept introduction:
Ionic compounds are made of cation and ions that are held together by the strong electrostatic force of attraction. Ionic compounds are classified in two categories binary ionic compound and ternary ionic compound on the basis of elements present in them. The total mass of the compound can be calculated by the sum of masses of individual elements present in it.
Answer to Problem 1ASA
The unknown compound is not carbonated salt as the loss and gain of the mass of the original compound indicates that this compound is hydrogen carbonate salt.
Explanation of Solution
The mass of the unknown compound is
The mass of the unknown compound after heating is
The mass of the decomposition product of unknown compound after converting into the chloride is
The hydrogen carbonate and carbonate compound on heating produce carbon dioxide gas. The decomposition reaction of hydrogen carbonate is shown below.
The hydrogen carbonates and carbonates lose masses on heating.
The reaction of carbonate with hydrochloric acid is shown below.
The reaction of oxide with hydrochloric acid is shown below.
The mass of the chloride is more than the mass of the oxide. One mole of hydrogen carbonate salt produces one mole of chloride salt but one mole of carbonate salt produces two moles of chloride salt. The overall decreased mass from the original compound to chloride salt is justified by hydrogen carbonate salt. Therefore, the compound is a hydrogen carbonate.
The unknown compound has hydrogen carbonate ion in it.
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
The two compounds that could be present in the unknown sample are to be stated.
Concept introduction:
Ionic compounds are made of cation and ions that are held together by the strong electrostatic force of attraction. Ionic compounds are classified in two categories binary ionic compound and ternary ionic compound on the basis of elements present in them. The total mass of the compound can be calculated by the sum of masses of individual elements present in it.
Answer to Problem 1ASA
Potassium hydrogen carbonate and sodium hydrogen carbonate can be present in the unknown sample.
Explanation of Solution
The unknown compound is a hydrogen carbonate salt.
The hydrogen carbonates of alkali metal are very reactive in nature. The two alkali metals are potassium and sodium. The decomposition reaction of potassium hydrogen carbonate and sodium hydrogen carbonate are shown below.
Therefore, the unknown sample can be
The two compounds that could be present in the unknown sample are
![Check Mark](/static/check-mark.png)
(c)
Interpretation:
The chemical equations for the conversion reaction of hydrogen carbonate of sodium and potassium into their corresponding chloride are to be stated.
Concept introduction:
A chemical reaction is a process in which rearrangement of atom or ions takes place between two reacting species. A balanced chemical equation represents an equation in which all the reactants and products are written with their stoichiometric coefficient and physical states. The number of atoms of an element on both sides of the equation is equal.
Answer to Problem 1ASA
The chemical equations for the conversion reaction of carbonate of sodium and potassium into their corresponding chloride are shown below.
Explanation of Solution
The general reaction sequence of the conversion reactions of hydrogen carbonate salt into chloride salt is shown below.
The conversion reactions of sodium hydrogen carbonate into sodium chloride is shown below.
The conversion reactions of potassium hydrogen carbonate into potassium chloride salt is shown below.
The numbers of atoms of each element on the left side of the reactions are equal to the right side of the reactions. Therefore, the reactions are balanced.
The balanced reaction of for conversion of sodium hydrogen carbonate into chloride salt is shown below.
The balanced reaction of for conversion of potassium hydrogen carbonate into chloride salt is shown below.
![Check Mark](/static/check-mark.png)
(d)
Interpretation:
The number of moles of chloride salt produced by one mole of metal hydrogen carbonate is to be stated.
Concept introduction:
A chemical reaction is a process in which rearrangement of atom or ions takes place between two reacting species. A balanced chemical equation represents an equation in which all the reactants and products are written with their stoichiometric coefficient and physical states. The number of atoms of an element on both sides of the equation is equal.
Answer to Problem 1ASA
The number of moles of chloride salt produced by one mole of metal hydrogen carbonate is
Explanation of Solution
The general reaction sequence of the conversion reactions of hydrogen carbonate into chloride salt is shown below.
Therefore, one mole of hydrogen carbonate salt produces one mole of chloride salt.
One mole of chloride salts is produced by one mole of hydrogen carbonate salt.
![Check Mark](/static/check-mark.png)
(e)
Interpretation:
The mass of chloride salt of sodium and potassium produced by one mole of their corresponding hydrogen carbonate salt is to be stated.
Concept introduction:
A chemical reaction is a process in which rearrangement of atom or ions takes place between two reacting species. A balanced chemical equation represents an equation in which all the reactants and products are written with their stoichiometric coefficient and physical states. The number of atoms of an element on both sides of the equation is equal.
Answer to Problem 1ASA
The mass of chloride salt of sodium and potassium produced by one mole of their corresponding hydrogen carbonate salt are
Explanation of Solution
The balanced reaction of for conversion of sodium hydrogen carbonate into chloride salt is shown below.
The balanced reaction of for conversion of potassium hydrogen carbonate into chloride salt is shown below.
The molar mass of
The molar mass of
One mole of chloride salts is produced by one mole of hydrogen carbonate salt.
The relation between the number of moles and molar mass of a substance can be given by the formula as shown below.
Where,
•
•
•
Substitute the value of the number of moles of sodium chloride and molar mass of the sodium chloride in the equation (1).
Therefore, one mole of sodium carbonate will produce
Substitute the value of the number of moles of potassium chloride and molar mass of the potassium chloride in the equation (1).
Therefore, one mole of potassium carbonate will produce
The mass of sodium chloride produced by one mole of sodium hydrogen carbonate is
![Check Mark](/static/check-mark.png)
(f)
Interpretation:
The values of
Concept introduction:
Ionic compounds are made of cation and ions that are held together by the strong electrostatic force of attraction. The value of
Answer to Problem 1ASA
The values of
Explanation of Solution
The molar mass of one mole of
The molar mass of one mole of
The molar mass one mole of
The molar mass one mole of
The value of
Substitute the values of the mass sodium chloride and mass of sodium hydrogen carbonate in the equation (2).
Therefore, the value of
Substitute the values of the mass potassium chloride and mass of potassium hydrogen carbonate in the equation (2).
Therefore, the theoretical value of
The values of
![Check Mark](/static/check-mark.png)
(g)
Interpretation:
The theoretical value of
Concept introduction:
Ionic compounds are made of cation and ions that are held together by the strong electrostatic force of attraction. The value of
Answer to Problem 1ASA
The theoretical value of
Explanation of Solution
The mass of the unknown compound is
The mass of the unknown compound after heating is
The mass of the decomposition product of unknown compound after converting into the chloride is
The value of
Substitute the values of mass unknown compound and mass of chloride in the above equation.
Therefore, the theoretical value of
The theoretical value of
![Check Mark](/static/check-mark.png)
(h)
Interpretation:
The unknown compound has to be identified.
Concept introduction:
Ionic compounds are made of cation and ions that are held together by the strong electrostatic force of attraction. The value of
Answer to Problem 1ASA
The unknown compound is potassium hydrogen carbonate.
Explanation of Solution
The value of
The value of
The theoretical value of
Therefore, the unknown compound is
The unknown compound is
Want to see more full solutions like this?
Chapter 5 Solutions
CHM 111/112 LAB MANUAL >C<
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)