
(a)
Interpretation:
Bond-dissociation energy should be identified for the red line bond in the given structure.
Concept introduction:
Bond-dissociation energy (
Bond-dissociation energy is mainly depends on the hybridization of the carbon atom and substitution on the carbon atom
It is also determined by the electronegativity of the molecule and polarization of the molecule to which carbon atom bonded with.
Sigma bond: A covalent bond formation is mainly due to end to end overlap of atomic orbitals.
Pi bond: A covalent bond formation is mainly due to side to side overlap of atomic orbitals
Electronegativity: The ability of an atom to attract electrons towards itself.
Polarization: A partial charge separation between the carbon and an other heteroatom due to its electronegativity difference.
(a)

Answer to Problem 19PP
Answer
The bond dissociation energy of the bonds in red line of the molecule (a) is given below
Carbon - carbon triple bond has more dissociation energy
Carbon - carbon triple bond has more dissociation energy than the carbon – carbon double bond and Carbon – carbon double bond more dissociation than the carbon – carbon single bond.
Explanation of Solution
To find: Bond-dissociation energy of the given compounds.
Draw the given molecule and analyze the nature of C-C bonds present in it.
The given molecule is drawn and it has three types of C-C bonds. They are
Carbon – Carbon Single bond has less dissociation energy than carbon – carbon double bond and triple bond. Carbon – carbon triple bond (sp hybridization) has more dissociation energy because it consists of three bonds (two pi bonds and one sigma bond) so it requires more energy to break the bonds than the other carbon- carbon double bonds (one pi bonds and one sigma bond) and carbon – carbon single bond (only one sigma bond).
(b)
Interpretation:
Bond-dissociation energy should be identified for the red line bond in the given structure.
Concept introduction:
Bond-dissociation energy (BDE) is determined from the strength of a single chemical bond.
Bond-dissociation energy is mainly depends on the hybridization of the carbon atom and substitution on the carbon atom
It is also determined by the electronegativity of the molecule and polarization of the molecule to which carbon atom bonded with.
Sigma bond: A covalent bond formation is mainly due to end to end overlap of atomic orbitals.
Pi bond: A covalent bond formation is mainly due to side to side overlap of atomic orbitals
Electronegativity: The ability of an atom to attract electrons towards itself.
Polarization: A partial charge separation between the carbon and an other heteroatom due to its electronegativity difference.
(b)

Answer to Problem 19PP
Answer
C-F bond has more dissociation energy
Explanation of Solution
To find: Bond-dissociation energy of the given compounds.
Draw the given molecule and analyze the nature of C-C bonds present in it.
The given molecule is drawn and it has four types of C-C bonds. They are
Bond dissociation energy depends on the electronegativity of the molecule and polarization of the molecule. If the molecule has high electronegativity (less polarizability) the dissociation energy of the molecule is high.
The electronegativity order in the halogen series given below
C-F has more Bond dissociation energy in the given molecule since it has more electronegativity than the other halogen atoms.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK ORGANIC CHEMISTRY-STUD.SOLNS.MAN+SG
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- Draw the line-angle formula of cis-2,3-dichloro-2-pentene. Then, draw the line-angle formula of trans-2,3-dichloro-2-pentene below. Draw the dash-wedge formula of cis-1,3-dimethylcyclohexane. Then, draw the dash-wedge formula of trans-1,3-dimethylcyclohexane below.arrow_forwardRecord the amounts measured and calculate the percent yield for Part 2 in the table below. Dicyclopentadiene measured in volume Cyclopentadiene measured in grams 0 Measured Calculated Mol Yield Mass (g) or Volume (mL) Mass (g) or Volume (ml) 0.6 2.955 Part 2 Measurements and Results Record the amounts measured and calculate the percent yield for Part 2 in the table below. 0.588 0.0044 2.868 0.0434 N/A Table view List view Measured Calculated Mol $ Yield Melting Point (C) Mass (g) or Volume (ml) Mass (g) or Volume (ml.) Cyclopentadiene 0.1 0.08 0.001189 measured in volume Maleic Anhydride 0.196 N/A cis-norbornene-5,6-endo- dicarboxylic anhydride 0.041 0.0002467 N/A N/A N/A 0.002 N/A N/A 128arrow_forwardDraw the condensed structural formula and line-angle formula for each: 2,3-dimethylheptane 3-bromo-2-pentanol 3-isopropyl-2-hexene 4-chlorobutanoic acidarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





