Bundle: Welding: Principles and Applications, 8th + MindTap Welding, 4 terms (24 months) Printed Access Card
8th Edition
ISBN: 9781337219426
Author: Larry Jeffus
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 14R
What is the purpose of postheating the metal after welding?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spring of stiffness factor 98 N/m is pulled through 20 cm. Find the restoring force and compute the mass which should be attached so as to stretch in spring by same amount.
L
2L
A
M
B
q
Need help with the answers I got wrong. The ones marked in red please
Chapter 6 Solutions
Bundle: Welding: Principles and Applications, 8th + MindTap Welding, 4 terms (24 months) Printed Access Card
Ch. 6 - What is the first weld bead of a multiple pass...Ch. 6 - What is the purpose of using ceramic backup tapes...Ch. 6 - How can discontinuities in the root face be...Ch. 6 - Describe the motion of the electrode in keyhole...Ch. 6 - What is the purpose of placing an assembled test...Ch. 6 - If the key hole becomes smaller and smaller, what...Ch. 6 - What is the purpose of a hot pass?Ch. 6 - What are the best ways to remove slag between...Ch. 6 - What is the last weld bead on a multipass weld...Ch. 6 - What is the purpose of grooving a joint before...
Ch. 6 - After a weld is back gouged and a groove is...Ch. 6 - When stopping an SMA welding bead on a pipe, what...Ch. 6 - What is the purpose of preheating metal before it...Ch. 6 - What is the purpose of postheating the metal after...Ch. 6 - What is interpass temperature?Ch. 6 - The AWS Visual Inspection Criteria allows one...Ch. 6 - What is the difference between a transverse face...Ch. 6 - What changes can be made to successfully make a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- please read everything properly... Take 3 4 5 hrs but solve full accurate drawing on bond paper don't use chat gpt etc okk.... Not old solutions just new solvearrow_forwardplease box out or highlight all the answersarrow_forwardWhat are some ways Historical Data can be used and applied to an estimate?arrow_forward
- Problem 1. Rod OAB is rotating counterclockwise with the constant angular velocity of 5 rad/s. In the position shown, collar P is sliding toward A with the constant speed of 0.8 m/s relative to the rod. Find the velocity of P and the acceleration of P. y B 3 P 300 mm A - Answer: Up = -0.861 − 0.48ĵ™; ā₂ = 4.8î −1.1ĵ marrow_forwardA bent tube is attached to a wall with brackets as shown. . A force of F = 980 lb is applied to the end of the tube with direction indicated by the dimensions in the figure. a.) Determine the force vector F in Cartesian components. → → b.) Resolve the force vector F into vector components parallel and perpendicular to the position vector rDA. Express each of these vectors in Cartesian components. 2013 Michael Swanbom cc 10 BY NC SA g x B A א Z FK с кая b Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 8 in 12 in с 15 in 36 in h 23 in g 28 in a. F = b. FDA = = ( + k) lb k) lb FIDA = 2 + k) lbarrow_forwardProblem 4. Part 1 100 mm C @ PROBLEM 15.160 Pin P slides in the circular slot cut in the plate shown at a constant relative speed u = 500 mm/s. Assuming that at the instant shown the angular velocity of the plate is 6 rad/s and is increasing at the rate of 20 rad/s², determine the acceleration of pin P when = 90°. 150 mm is NOT zero. Answer: a = 3.4î −15.1ĵ m/s² ) P (Hint: u is a constant number, which means that the tangential component of F is zero. However, the normal component of Part2. When 0 = 120°, u = 600 mm/s and is increasing at the rate of 30mm/s², determine the acceleration of pin P.arrow_forward
- Problem 5. Disk D of the Geneva mechanism rotates with constant counterclockwise angular velocity wD = 10 rad/s. At the instant when & = 150º, determine (a) the angular velocity of disk S, and (b) the velocity of pin P relative to disk S. (c). the angular acceleration of S. Disk S R=50 mm =135° |1=√ER- Disk D Partial answers: Ō = -4.08 Â rad/s ā¸ = -233 k rad/s²arrow_forwardProblem 3. In the figure below, point A protrudes from link AB and slides in the rod OC. Rod OC is rotating with angular velocity woc = 2 rad/s and aoc = 3 rad/s² in the directions shown. Find the following, remembering to clearly define your axes and the rate of rotation of the frame. a. The angular velocity of link AB and the velocity of A relative to rod OC. m (Answers: @AB is 2.9 rad/s CCW, rxy = .58! toward C) S b. The angular acceleration of link AB and the acceleration of A relative to rod OC. Answers: αAB = 7.12 rad/s² CCW, r = 6.3 m ܐܨ toward C. B C A 30° Фос 400 mm OA=500 mm docarrow_forwardProblem 2. 6 m 30° B PROBLEM 15.164 At the instant shown the length of the boom AB is being decreased at the constant rate of 0.2 m/s and the boom is being lowered at the constant rate of 0.08 rad/s. Determine (a) the velocity of Point B, (b) the acceleration of Point B. Partial answer: a = −0.049î +0.009ĵ m/s²arrow_forward
- A crate is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 121.92 cm above the top of the crate directly over the geometric center of the top surface. Use the given dimensions from the table below to perform the following calculations: →> a.) Determine the position vector IAD that describes rope AD. b.) Compute the unit vector cд that points from point C to point A. c.) If rope AB carries a tension force of magnitude FT = 760 → N, determine the force vector FT that expresses how this force acts on point A. Express each vector in Cartesian components to three significant figures. 2013 Michael Swanbom ↑z BY NC SA b x B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 101.6 cm b 124.46 cm с 38.71 cm a. rдD = + b. ÛCA c. FT= =…arrow_forwardF3 N< Ꮎ 2 F2 -Y F1 There are 3 forces acting on the eye bolt. Force F1 acts on the XY plane has a magnitude of 536 lbf, and the angle of 0 = 38°. Force F2 acts on the YZ plane has a magnitude of 651 lbf, and the angle = 41°. Force F3 has a magnitude of 256 lb, and coordinate. = f direction angles of a 71°, B = 115°, and y = 33°. Determine the resultant force on the eye bolt. FR = ( + k) lbf FR magnitude: FR coordinate direction angle a: deg FR coordinate direction angle ẞ`: deg FR coordinate direction angle y: deg lbfarrow_forwardBall joints connect the ends of each of the struts as shown. The resulting structure supports a force of F = 1925 N which lies in the xz plane. a.) Determine the angle (in degrees) between strut AD and strut AC. b.) Determine the dimension g such that the force Fis →> perpendicular to гAC. 2013 Michael Swanbom CC BY NC SA B b C h/ L 不 g F ୮ d y LLC Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 4.8 cm b 13.4 cm C 11.6 cm d 10.4 cm h 4.4 cm k 14.8 cm a. The angle between strut AD and strut AC is b. The dimension g is deg. cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY