INTRO. TO CHEM LOOSELEAF W/ALEKS 18WKCR
INTRO. TO CHEM LOOSELEAF W/ALEKS 18WKCR
5th Edition
ISBN: 9781264125609
Author: BAUER
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 125QP
Interpretation Introduction

Interpretation:

The specific heat of pipe is to be determined.

Concept Introduction:

Specific heat of a substance is defined as the amount of heat required to raise the temperature of 1 g of that substance by 1°C .

Expert Solution & Answer
Check Mark

Answer to Problem 125QP

Solution:

The specific heat of pipe is found to be 0.450 J/g°C .

Explanation of Solution

Given Information: Mass of pipe and water is 175 g and 100 g , respectively. The temperatures of pipe and water are 78.24°C and 25.00°C , respectively. The final temperature of the mixture is 33.43°C .

Heat transfer takes place from high temperature to low temperature. So, the temperature of the pipe will decrease and that of the water will increase to attain thermal equilibrium. At thermal equilibrium, temperatures of both pipe and water will be equal.

The heat lost by the pipe can be calculated as follows.

qpipe=mpipe×Cpipe×ΔTpipe

Here, qpipe is the heat lost by the pipe, mpipe is the given mass of the pipe, Cpipe is the specific heat of the pipe, and ΔTpipe is the decrease in temperature of the pipe.

Substitute 175 g for mpipe and T°C78.24°C for ΔTCu in the above equation. Here, T°C is the temperature of pipe and water at thermal equilibrium.

qpipe=150 g×Cpipe×T°C78.24°C

Substitute 33.43°C for T°C in the above equation.

qCu=175 g×Cpipe×33.43°C78.24°C=175 g×Cpipe×44.81°C=7841.75 g°CCpipe

The heat gained by the water can be calculated as follows.

qwater=mwater×Cwater×ΔTwater

Here, qwater is the heat gained by the water, mwater is the given mass of the water, Cwater is the specific heat of the water, and ΔTwater is the increase in temperature of the water.

Substitute 100 g for mwater , 4.184 J/g°C for Cwater , and T°C25.00°C for ΔTwater in the above equation. Here, T°C is the temperature of water and pipe at thermal equilibrium.

qwater=100 g×4.184 J/g°C×T°C25.00°C

Substitute 33.43°C for T°C in the above equation.

qwater=100 g×4.184 J/g°C×33.43°C25.00°C=100 g×4.184 J/g°C×8.43°C=3527.12 J

As no heat is lost from the water, according to the law of conservation of energy, the total heat of the system remains conserved.

qwater+qpipe=0

The specific heat of the copper can be calculated using the above equation and the calculated values of qwater and qCu are as follows.

3527.12 J+7841.75 g°CCpipe=07841.75 g°CCpipe=3527.12 JCpipe=3527.12 J7841.75 g°CCpipe=0.450 J/g°C

Therefore, the specific heat of the pipe is 0.450 J/g°C and using table 6.2, it could be said that the pipe is made up of chromium s .

Conclusion

The specific heat of the pipe is 0.450 J/g°C and the material that the pipe is made up of is chromium s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 6 Solutions

INTRO. TO CHEM LOOSELEAF W/ALEKS 18WKCR

Ch. 6 - Prob. 4PPCh. 6 - Consider the combination reaction of nitrogen gas...Ch. 6 - Prob. 6PPCh. 6 - Prob. 7PPCh. 6 - Prob. 8PPCh. 6 - Prob. 9PPCh. 6 - Prob. 10PPCh. 6 - Prob. 11PPCh. 6 - Prob. 12PPCh. 6 - Prob. 13PPCh. 6 - Prob. 14PPCh. 6 - Prob. 1QPCh. 6 - Prob. 2QPCh. 6 - Prob. 3QPCh. 6 - Prob. 4QPCh. 6 - Prob. 5QPCh. 6 - Prob. 6QPCh. 6 - Prob. 7QPCh. 6 - Prob. 8QPCh. 6 - Prob. 9QPCh. 6 - Prob. 10QPCh. 6 - Prob. 11QPCh. 6 - Prob. 12QPCh. 6 - Prob. 13QPCh. 6 - Prob. 14QPCh. 6 - Prob. 15QPCh. 6 - Prob. 16QPCh. 6 - Prob. 17QPCh. 6 - Prob. 18QPCh. 6 - Prob. 19QPCh. 6 - Prob. 20QPCh. 6 - Prob. 21QPCh. 6 - Prob. 22QPCh. 6 - Prob. 23QPCh. 6 - Prob. 24QPCh. 6 - Prob. 25QPCh. 6 - Prob. 26QPCh. 6 - Prob. 27QPCh. 6 - Prob. 28QPCh. 6 - Prob. 29QPCh. 6 - Prob. 30QPCh. 6 - Prob. 31QPCh. 6 - Prob. 32QPCh. 6 - Prob. 33QPCh. 6 - The balanced equation for the reaction of chromium...Ch. 6 - Prob. 35QPCh. 6 - Prob. 36QPCh. 6 - Prob. 37QPCh. 6 - Prob. 38QPCh. 6 - Prob. 39QPCh. 6 - Prob. 40QPCh. 6 - Prob. 41QPCh. 6 - Prob. 42QPCh. 6 - Prob. 43QPCh. 6 - Prob. 44QPCh. 6 - Prob. 45QPCh. 6 - Prob. 46QPCh. 6 - Prob. 47QPCh. 6 - Prob. 48QPCh. 6 - Prob. 49QPCh. 6 - Prob. 50QPCh. 6 - Prob. 51QPCh. 6 - Prob. 52QPCh. 6 - Prob. 53QPCh. 6 - Prob. 54QPCh. 6 - Prob. 55QPCh. 6 - A student added zinc metal to copper(II) nitrate...Ch. 6 - Prob. 57QPCh. 6 - Prob. 58QPCh. 6 - When I2 is mixed with excess H2, 0.80 mol HI is...Ch. 6 - The reaction of lithium metal and water to form...Ch. 6 - Prob. 61QPCh. 6 - Prob. 62QPCh. 6 - If energy cannot be created or destroyed, what...Ch. 6 - Prob. 64QPCh. 6 - Prob. 65QPCh. 6 - Prob. 66QPCh. 6 - Prob. 67QPCh. 6 - Prob. 68QPCh. 6 - Prob. 69QPCh. 6 - Prob. 70QPCh. 6 - Prob. 71QPCh. 6 - Prob. 72QPCh. 6 - Prob. 73QPCh. 6 - Prob. 74QPCh. 6 - Prob. 75QPCh. 6 - Prob. 76QPCh. 6 - Prob. 77QPCh. 6 - Prob. 78QPCh. 6 - Prob. 79QPCh. 6 - Prob. 80QPCh. 6 - Prob. 81QPCh. 6 - Prob. 82QPCh. 6 - Prob. 83QPCh. 6 - Prob. 84QPCh. 6 - Prob. 85QPCh. 6 - Prob. 86QPCh. 6 - Prob. 87QPCh. 6 - Prob. 88QPCh. 6 - Prob. 89QPCh. 6 - Prob. 90QPCh. 6 - Prob. 91QPCh. 6 - Prob. 92QPCh. 6 - Prob. 93QPCh. 6 - Prob. 94QPCh. 6 - Prob. 95QPCh. 6 - Prob. 96QPCh. 6 - Prob. 97QPCh. 6 - Prob. 98QPCh. 6 - Prob. 99QPCh. 6 - Prob. 100QPCh. 6 - Prob. 101QPCh. 6 - Prob. 102QPCh. 6 - Prob. 103QPCh. 6 - Prob. 104QPCh. 6 - Prob. 105QPCh. 6 - Prob. 106QPCh. 6 - Prob. 107QPCh. 6 - Prob. 108QPCh. 6 - Prob. 109QPCh. 6 - Prob. 110QPCh. 6 - The balanced equation for the combustion of octane...Ch. 6 - Prob. 112QPCh. 6 - Prob. 113QPCh. 6 - Prob. 114QPCh. 6 - Prob. 115QPCh. 6 - Prob. 116QPCh. 6 - Prob. 117QPCh. 6 - Prob. 118QPCh. 6 - Prob. 119QPCh. 6 - Prob. 120QPCh. 6 - Prob. 121QPCh. 6 - Prob. 122QPCh. 6 - Prob. 123QPCh. 6 - Prob. 124QPCh. 6 - Prob. 125QPCh. 6 - A 150.0-g sample of copper is heated to 89.3C. The...Ch. 6 - How many moles of aqueous magnesium ions and...Ch. 6 - Prob. 128QPCh. 6 - How many moles of aqueous potassium ions and...Ch. 6 - Prob. 130QPCh. 6 - Prob. 131QPCh. 6 - Prob. 132QPCh. 6 - Prob. 133QPCh. 6 - Prob. 134QPCh. 6 - Prob. 135QPCh. 6 - Prob. 136QPCh. 6 - Prob. 137QPCh. 6 - Prob. 138QPCh. 6 - Prob. 139QPCh. 6 - Prob. 140QPCh. 6 - Prob. 141QPCh. 6 - When calculating percent yield for a reaction, the...Ch. 6 - Prob. 143QPCh. 6 - Prob. 144QPCh. 6 - Prob. 145QPCh. 6 - Prob. 146QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY