COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 103QAP
To determine

(a)

The speed of the material as it leaves the surface.

Expert Solution
Check Mark

Answer to Problem 103QAP

The speed of the material as it leaves the surface is 23.56m/sec.

Explanation of Solution

Given:

  gmars=3.7m/sec2h=75.0m

Concept Used:

Law of conservation of mechanical energy.

Calculation:

From the law of conservation of mechanical energy, we can calculate the speed of the material as it leaves the surface. The gravitational potential energy of the material at the surface is to be zero.

As the gas is travelling just below the surface of the surface of the planet, we can ignore the change in gravitational potential energy

According to law of conservation of energy:

  Ui+Ki=Uf+Kf0+12mvi2=mgmarsh+0vi=2gmarsh

On replacing the values, we get

  gmars=3.7m/sec2h=75.0mvi=2×3.7×75.0vi=23.56m/sec

Conclusion:

The speed of the material as it leaves the surface is 23.56m/sec.

To determine

(b)

The energy per kilogram of material is lost due to nonconservative forces.

Expert Solution
Check Mark

Answer to Problem 103QAP

The energy per kilogram of material is lost due to nonconservative forces is 7.0×102J/kg.

Explanation of Solution

Given:

  gmars=3.7m/sec2h=75.0mvi=160km/hr

Concept Used:

Law of nonconservative of work.

Calculation:

From the law of conservation of mechanical energy, we can calculate the speed of the material as it leaves the surface. The gravitational potential energy of the material at the surface is to be zero.

As the gas is travelling just below the surface of the surface of the planet, we can ignore the change in gravitational potential energy.

As the gas leaves the jets it is just travelling underground at the speed of 160km/hr

So, vi=160km/hr

Converting the units:

  vi=160km/hr×103m1km×1h3600secvi=44.4m/sec

According to law of conservation of energy:

  Ui+Ki=Uf+Kfmgmarsh+0=0+12mvf2vf=2gmarsh

On replacing the values, we get

  gmars=3.7m/sec2h=75.0mvf=2×3.7×75.0vf=23.56m/sec

According to law of nonconservative of work:

  Wnonconservative=ΔK+ΔUWnonconservative=12m(vf2vi2)+0E=WmE=Wnonconservativem=12(vf2vi2)

On replacing the values, we get

  vi=44.4m/secvf=23.56m/secE=12(23.56244.42)E=7.0×102J/kg

Conclusion:

The energy per kilogram of material is lost due to nonconservative forces is 7.0×102J/kg.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?
a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?
Block A, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0.20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 15.0 kg. is attached to the dangling end of the string. What is the acceleration of Block B in m/s?  show all steps please

Chapter 6 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 6 - Prob. 11QAPCh. 6 - Prob. 12QAPCh. 6 - Prob. 13QAPCh. 6 - Prob. 14QAPCh. 6 - Prob. 15QAPCh. 6 - Prob. 16QAPCh. 6 - Prob. 17QAPCh. 6 - Prob. 18QAPCh. 6 - Prob. 19QAPCh. 6 - Prob. 20QAPCh. 6 - Prob. 21QAPCh. 6 - Prob. 22QAPCh. 6 - Prob. 23QAPCh. 6 - Prob. 24QAPCh. 6 - Prob. 25QAPCh. 6 - Prob. 26QAPCh. 6 - Prob. 27QAPCh. 6 - Prob. 28QAPCh. 6 - Prob. 29QAPCh. 6 - Prob. 30QAPCh. 6 - Prob. 31QAPCh. 6 - Prob. 32QAPCh. 6 - Prob. 33QAPCh. 6 - Prob. 34QAPCh. 6 - Prob. 35QAPCh. 6 - Prob. 36QAPCh. 6 - Prob. 37QAPCh. 6 - Prob. 38QAPCh. 6 - Prob. 39QAPCh. 6 - Prob. 40QAPCh. 6 - Prob. 41QAPCh. 6 - Prob. 42QAPCh. 6 - Prob. 43QAPCh. 6 - Prob. 44QAPCh. 6 - Prob. 45QAPCh. 6 - Prob. 46QAPCh. 6 - Prob. 47QAPCh. 6 - Prob. 48QAPCh. 6 - Prob. 49QAPCh. 6 - Prob. 50QAPCh. 6 - Prob. 51QAPCh. 6 - Prob. 52QAPCh. 6 - Prob. 53QAPCh. 6 - Prob. 54QAPCh. 6 - Prob. 55QAPCh. 6 - Prob. 56QAPCh. 6 - Prob. 57QAPCh. 6 - Prob. 58QAPCh. 6 - Prob. 59QAPCh. 6 - Prob. 60QAPCh. 6 - Prob. 61QAPCh. 6 - Prob. 62QAPCh. 6 - Prob. 63QAPCh. 6 - Prob. 64QAPCh. 6 - Prob. 65QAPCh. 6 - Prob. 66QAPCh. 6 - Prob. 67QAPCh. 6 - Prob. 68QAPCh. 6 - Prob. 69QAPCh. 6 - Prob. 70QAPCh. 6 - Prob. 71QAPCh. 6 - Prob. 72QAPCh. 6 - Prob. 73QAPCh. 6 - Prob. 74QAPCh. 6 - Prob. 75QAPCh. 6 - Prob. 76QAPCh. 6 - Prob. 77QAPCh. 6 - Prob. 78QAPCh. 6 - Prob. 79QAPCh. 6 - Prob. 80QAPCh. 6 - Prob. 81QAPCh. 6 - Prob. 82QAPCh. 6 - Prob. 83QAPCh. 6 - Prob. 84QAPCh. 6 - Prob. 85QAPCh. 6 - Prob. 86QAPCh. 6 - Prob. 87QAPCh. 6 - Prob. 88QAPCh. 6 - Prob. 89QAPCh. 6 - Prob. 90QAPCh. 6 - Prob. 91QAPCh. 6 - Prob. 92QAPCh. 6 - Prob. 93QAPCh. 6 - Prob. 94QAPCh. 6 - Prob. 95QAPCh. 6 - Prob. 96QAPCh. 6 - Prob. 97QAPCh. 6 - Prob. 98QAPCh. 6 - Prob. 99QAPCh. 6 - Prob. 100QAPCh. 6 - Prob. 101QAPCh. 6 - Prob. 102QAPCh. 6 - Prob. 103QAPCh. 6 - Prob. 104QAPCh. 6 - Prob. 105QAPCh. 6 - Prob. 106QAPCh. 6 - Prob. 107QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY