COLLEGE PHYSICS-CONNECT ACCESS
COLLEGE PHYSICS-CONNECT ACCESS
5th Edition
ISBN: 9781260486834
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 100P

(a)

To determine

The amount of energy dissipated by friction.

(a)

Expert Solution
Check Mark

Answer to Problem 100P

The amount of energy dissipated by friction is 935J_.

Explanation of Solution

Figure 1 represents the free body diagram of the crate.

COLLEGE PHYSICS-CONNECT ACCESS, Chapter 6, Problem 100P

For an isolated system the total energy of the system (the sum of mechanical energy and its internal energy) is conserved.

    ΔK+ΔU+ΔEint=0

Here, ΔK is the change in kinetic energy, ΔU is the change in potential energy, and ΔEint is the change in internal energy of the system.

In this situation, the work done by the frictional force is equal to the change in internal energy of the system.

The above equation is reduced to.

    (12mvf212mvi2)+mgΔy+ΔEint=0

Here, ΔEint is the energy dissipated by friction, m is the mass of the crate, g is the acceleration due to gravity, and Δy is the distance travelled along the incline.

Since the final velocity of the crate is zero and the distance travelled along incline is given by dsinθ, the above equation is reduced to

    12mvi2mgdsinθ+ΔEint=0        (I)

Here, d is the distance travelled along the incline.

Rearrange the above equation.

    ΔEint=12mvi2+mgdsinθ        (II)

Conclusion:

Substitute 100kg for m, 2m/s for vi, 9.8m/s2 for g, 1.5m for d, and 30° for θ in equation (I), to find ΔEint.

    ΔEint=12(100kg)(2m/s)2(100kg)(9.8m/s2)(1.5m)sin30°=935J

Therefore, the amount of energy dissipated by friction is 935J_.

(b)

To determine

The coefficient of the sliding friction.

(b)

Expert Solution
Check Mark

Answer to Problem 100P

The coefficient of the sliding friction is 0.73_.

Explanation of Solution

Write the expression for net force acting along y direction.

    Fy=0

Apply the above condition in Figure 1.

    Nmgcosθ=0N=mgcosθ        (III)

Write the expression for internal energy dissipated by friction.

    ΔEfric=μkNd

Here, μk is the coefficient of kinetic friction, N is the normal force, and d is the distance travelled along the incline.

Use the above equation in equation (III).

    ΔEfric=μkmgcosθd

Rearrange the above equation to find μk.

    μk=ΔEfricmgdcosθ        (IV)

Conclusion:

Substitute 935J for ΔEint, 100kg for m, 9.8m/s2 for g, 1.5m for d, and 30° for θ in equation (IV), to find μk.

    μk=935J(100kg)(9.8m/s2)(1.5m)cos30°=0.73

Therefore, the coefficient of the sliding friction is 0.73_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…
2nd drop down is "up" or "down"
Romeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. (a) How far (in m) does the 81.0 kg boat move toward the shore it is facing? m (b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move? magnitude m direction ---Select---

Chapter 6 Solutions

COLLEGE PHYSICS-CONNECT ACCESS

Ch. 6.5 - Prob. 6.5CPCh. 6.5 - Prob. 6.7PPCh. 6.6 - Prob. 6.9PPCh. 6.6 - Prob. 6.10PPCh. 6.7 - Prob. 6.7CPCh. 6.7 - Prob. 6.11PPCh. 6.8 - Prob. 6.13PPCh. 6.8 - Prob. 6.14PPCh. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - A mango falls to the ground. During the fall, does...Ch. 6 - Can static friction do work? If so, give an...Ch. 6 - In the design of a roller coaster, is it possible...Ch. 6 - Prob. 7CQCh. 6 - A gymnast is swinging in a vertical circle about a...Ch. 6 - Prob. 9CQCh. 6 - The main energy expenditure involved in running...Ch. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 1MCQCh. 6 - Prob. 2MCQCh. 6 - Prob. 3MCQCh. 6 - Questions 3–6. The orbit of Mercury is much more...Ch. 6 - Prob. 5MCQCh. 6 - Prob. 6MCQCh. 6 - Prob. 7MCQCh. 6 - Prob. 8MCQCh. 6 - What speed does the catapult give a pebble of mass...Ch. 6 - Prob. 10MCQCh. 6 - Prob. 11MCQCh. 6 - Prob. 1PCh. 6 - A sled is dragged along a horizontal path at a...Ch. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Starting from rest, a horse pulls a 250 kg cart...Ch. 6 - Prob. 9PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - A crate of mass m1 = 12.4 kg is pulled by a...Ch. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - In Problem 6, what is the pile driver’s speed just...Ch. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 27PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - Prob. 70PCh. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Prob. 87PCh. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Prob. 97PCh. 6 - A spring scale in a French market is calibrated to...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Prob. 102PCh. 6 - Prob. 103PCh. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - Prob. 107PCh. 6 - Prob. 108PCh. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - A spring with k = 40.0 N/m is at the base of a...Ch. 6 - Prob. 112PCh. 6 - Prob. 113PCh. 6 - Prob. 114PCh. 6 - Prob. 115PCh. 6 - Prob. 117PCh. 6 - A 0.50 kg block, starting at rest, slides down a...Ch. 6 - Prob. 119PCh. 6 - Prob. 121PCh. 6 - Prob. 123PCh. 6 - Prob. 124PCh. 6 - Prob. 125PCh. 6 - Prob. 126PCh. 6 - Prob. 127PCh. 6 - Prob. 128PCh. 6 - Prob. 129PCh. 6 - Prob. 130PCh. 6 - Prob. 131PCh. 6 - Prob. 132PCh. 6 - Prob. 133PCh. 6 - Prob. 135PCh. 6 - Prob. 136PCh. 6 - Prob. 137PCh. 6 - Prob. 138PCh. 6 - Prob. 139PCh. 6 - Prob. 140PCh. 6 - Prob. 141PCh. 6 - Prob. 142P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY