Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.9, Problem 30E
To determine
To prove:
The relation between the matrices
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
stacie is a resident at a medical facility you work at. You are asked to chart the amount of solid food that she consumes.For the noon meal today, she ate 1/2 of a 3 ounce serving of meatloaf, 3/4 of her 3 ounce serving of mashed potatoes, and 1/3 of her 2 ounce serving of green beans. Show in decimal form how many ounces of solid food that Stacie consumed
I've been struggling with this because of how close the numbers are together!! I would really appreciate if someone could help me❤️
Matrix MЄ R4×4, as specified below, is an orthogonal matrix - thus, it fulfills MTM = I.
M
(ELES),-
m2,1.
We know also that all the six unknowns mr,c are non-negative with the exception of
Your first task is to find the values of all the six unknowns. Think first, which of the mr,c you should find first.
Next, consider a vector v = (-6, 0, 0, 8) T. What's the length of v, i.e., |v|?
Using M as transformation matrix, map v onto w by w = Mv provide w with its numeric values.
What's the length of w, especially when comparing it to the length of v?
Finally, consider another vector p = ( 0, 0, 8, 6) T. What's the angle between v (from above) and p?
Using M as transformation matrix, map p onto q by q = Mp - provide q with its numeric values.
What's the angle between w and q, especially when comparing it to the angle between v and p?
Chapter 5 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - Prob. 7ECh. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - In Exercises 6-11, the given set is a subset of a...
Ch. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - Let Q denote the set of all (22) nonsingular...Ch. 5.2 - Let Q denote the set of all (22) singular matrices...Ch. 5.2 - Let Q denote the set of all (22) symmetric...Ch. 5.2 - Prove the cancellation laws for vector addition.Ch. 5.2 - Prove property 2 of Theorem 1. Hint: See the proof...Ch. 5.2 - Prove property 3 of Theorem 1. Hint: Note that...Ch. 5.2 - Prove property 5 of Theorem 1. If a0 then multiply...Ch. 5.2 - Prob. 24ECh. 5.2 - In Exercise s 25-29, the given set is a subset of...Ch. 5.2 - In Exercises 2529, the given set is a subset of...Ch. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - In Exercises 2529, the given set is a subset of...Ch. 5.2 - Prob. 30ECh. 5.2 - The following are subsets of vector space C2[1,1]....Ch. 5.2 - Prob. 32ECh. 5.2 - Let F(R) denote the set of all real valued...Ch. 5.2 - Let V={x:x=[x1x2],wherex1andx2areinR}. For u and v...Ch. 5.2 - Let, V={x:x=[x1x2],wherex1andx2areinR}. For u and...Ch. 5.2 - Let V={x:x=[x1x2],wherex20}. For u and v in V and...Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - Prob. 6ECh. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - Prob. 12ECh. 5.3 - In Exercises 1316, which of the given subsets of...Ch. 5.3 - In Exercises 1316, which of the given subsets of...Ch. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - Let V be the vector space of all (22) matrices....Ch. 5.3 - Let W be the subset of P3 defined by...Ch. 5.3 - Let W be the subset of P3 defined by...Ch. 5.3 - Find a spanning set for each of the subsets that...Ch. 5.3 - Show that the set W of all symmetric (33) matrices...Ch. 5.3 - The trace of an (nn) matrix A=(aij), denoted...Ch. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Let V be the set of all (33) upper-triangular...Ch. 5.3 - Prob. 32ECh. 5.3 - Let A be an arbitrary matrix in the vector space...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 1-4, W is a subspace of the vector...Ch. 5.4 - In exercise 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - Find a basis for the subspace V of P4, where...Ch. 5.4 - Prove that the set of all real (22) symmetric...Ch. 5.4 - Let V be the vector space of all (22) real...Ch. 5.4 - With respect to the basis B={1,x,x2} for P2, find...Ch. 5.4 - With respect to the basis B={E11,E12,E21,E22} for...Ch. 5.4 - Prove that {1,x,x2,......xn} is a linearly...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - 22. In P2, let S={p1(x),p2(x),p3(x),p4(x)}, where...Ch. 5.4 - Let S be the subset of P2 given in Exercise 22....Ch. 5.4 - Let V be the vector space of all (22) matrices and...Ch. 5.4 - Let V and S be as in Exercise 24. Find a subset of...Ch. 5.4 - In P2, let Q={p1(x),p2(x),p3(x)}, Where...Ch. 5.4 - Let Q be the basis for P2 given in Exercise 26....Ch. 5.4 - Let Q be the basis for P2 given in Exercise 26....Ch. 5.4 - In the vector space V of (22) matrices, let...Ch. 5.4 - With V and Q as in Exercise 29, find [A]Q for,...Ch. 5.4 - With V and Q as in Exercise 29, find [A]Q for,...Ch. 5.4 - Give an alternate proof that {1,x,x2} is a...Ch. 5.4 - The set {sinx,cosx} is a subset of the vector...Ch. 5.4 - In Exercises 34 and 35, V is the set of...Ch. 5.4 - In Exercises 34 and 35, V is the set of...Ch. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Use Exercise 37 to obtain necessary and sufficient...Ch. 5.5 - 1.Let V be the set of all real (33) matrices, and...Ch. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Recall that a square matrix A is called the skew...Ch. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - 14. Let W be the subspace of C[,] consisting of...Ch. 5.5 - Let V denote the set of all infinite sequences of...Ch. 5.5 - Prob. 16ECh. 5.5 - Let W be a subspace of a finite-dimensional vector...Ch. 5.5 - Prob. 18ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Prob. 22ECh. 5.5 - By Theorem 5 of Section 5.4, an (nn) transition...Ch. 5.5 - Prob. 24ECh. 5.6 - Prove that x,y=4x1y1+x2y2 is an inner product on...Ch. 5.6 - Prob. 2ECh. 5.6 - A real (nn) symmetric matrix A is called positive...Ch. 5.6 - Prove that the following symmetric matrix A is...Ch. 5.6 - Prob. 5ECh. 5.6 - Prob. 6ECh. 5.6 - Prob. 7ECh. 5.6 - Prob. 8ECh. 5.6 - Prob. 9ECh. 5.6 - In P2, let p(x)=1+2x+x2 and q(x)=1x+2x2. Using the...Ch. 5.6 - Prob. 11ECh. 5.6 - Prob. 12ECh. 5.6 - Prob. 13ECh. 5.6 - Prob. 14ECh. 5.6 - Let {u1,u2} be the orthogonal basis for R2...Ch. 5.6 - Prob. 16ECh. 5.6 - Prob. 17ECh. 5.6 - Prob. 18ECh. 5.6 - Prob. 19ECh. 5.6 - Prob. 20ECh. 5.6 - Prob. 21ECh. 5.6 - Prob. 22ECh. 5.6 - Prob. 23ECh. 5.6 - Prob. 24ECh. 5.6 - Prob. 25ECh. 5.6 - Prob. 26ECh. 5.6 - Prob. 27ECh. 5.6 - Prob. 28ECh. 5.6 - A sequence of orthogonal polynomials usually...Ch. 5.6 - Prob. 30ECh. 5.6 - Show that if A is a real (nn) matrix and if the...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - Suppose that T:P2P3 is a linear transformation,...Ch. 5.7 - 10. Suppose that T:P2P4 is a linear...Ch. 5.7 - Let V be the set of all (22) matrices and suppose...Ch. 5.7 - With V as in Exercise 11, define T:VR2 by...Ch. 5.7 - Let T:P4P2 be the linear transformation defined by...Ch. 5.7 - Define T:P4P3 by...Ch. 5.7 - Identify N(T) and R(T) for the linear...Ch. 5.7 - Identify N(T) and R(T) for the linear...Ch. 5.7 - Prob. 17ECh. 5.7 - Prob. 18ECh. 5.7 - Suppose that T:P4P2 is a linear transformation....Ch. 5.7 - Prob. 21ECh. 5.7 - Prob. 22ECh. 5.7 - Prob. 23ECh. 5.7 - Prob. 24ECh. 5.7 - Prob. 25ECh. 5.7 - Prob. 26ECh. 5.7 - Let V be the vector space of all (22) matrices and...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - 7. The functions ex,e2x and e3x are linearly...Ch. 5.8 - Let V be the subspace of C[0,1] defined by...Ch. 5.8 - Let V be the vector space of all 22 matrices and...Ch. 5.8 - Let V be the vector space of all (22) matrices,...Ch. 5.8 - Prob. 11ECh. 5.8 - Let U be the vector space of all (22) symmetric...Ch. 5.8 - Prob. 13ECh. 5.8 - Prob. 14ECh. 5.8 - Prob. 15ECh. 5.8 - Prob. 16ECh. 5.8 - Prob. 17ECh. 5.8 - Let S:UV and T:VW be linear transformations. a...Ch. 5.8 - Prob. 19ECh. 5.8 - Prob. 20ECh. 5.8 - Prob. 21ECh. 5.8 - Prob. 22ECh. 5.8 - Prob. 23ECh. 5.8 - Prob. 24ECh. 5.8 - Prob. 25ECh. 5.8 - Prob. 26ECh. 5.8 - Prob. 27ECh. 5.8 - Prob. 28ECh. 5.8 - Prob. 29ECh. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - Let T:VV be the linear transformation defined in...Ch. 5.9 - Let T:VV be the linear transformation defined in...Ch. 5.9 - Let V be the vector space of (22) matrices and...Ch. 5.9 - Let S:P2P3 be given by S(p)=x3px2p+3p. Find the...Ch. 5.9 - Let S be the transformation in Exercise 14, let...Ch. 5.9 - Let S be the transformation in Exercise 14, let...Ch. 5.9 - Let T:P2R3 be given by T(p)=[p(0)3p(1)p(1)+p(0)]....Ch. 5.9 - Find the representation for the transformation in...Ch. 5.9 - Let T:VV be a linear transformation, where...Ch. 5.9 - Let T:R3R2 be given by T(x)=Ax, where A=[121304]....Ch. 5.9 - Let T:P2P2 be defined by...Ch. 5.9 - Let T be the linear transformation defined in...Ch. 5.9 - Let T be the linear transformation defined in...Ch. 5.9 - Prob. 24ECh. 5.9 - Prob. 25ECh. 5.9 - Prob. 26ECh. 5.9 - Prob. 27ECh. 5.9 - Prob. 28ECh. 5.9 - Prob. 29ECh. 5.9 - Prob. 30ECh. 5.9 - In Exercise 31 and 32, Q is the (34) matrix given...Ch. 5.9 - Prob. 32ECh. 5.9 - Complete the proof of theorem 21 by showing that...Ch. 5.10 - Let T:R2R2 is defined by T([x1x2])=[2x1+x2x1+2x2]...Ch. 5.10 - Let T:P2P2 is defined by...Ch. 5.10 - Prob. 3ECh. 5.10 - Prob. 4ECh. 5.10 - Prob. 5ECh. 5.10 - Prob. 6ECh. 5.10 - Prob. 7ECh. 5.10 - Repeat Exercise 7 for the basis vectors w1=[43],...Ch. 5.10 - Prob. 9ECh. 5.10 - Represent the following quadratic polynomials in...Ch. 5.10 - Prob. 11ECh. 5.10 - Let T:P2P2 is a linear transformation defined in...Ch. 5.10 - Prob. 13ECh. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - Prob. 17ECh. 5.10 - Prob. 18ECh. 5.10 - Prob. 19ECh. 5.10 - Prob. 20ECh. 5.10 - Prob. 21ECh. 5.SE - Let V be the set of all 2x2 matrices with Real...Ch. 5.SE - Prob. 2SECh. 5.SE - Prob. 3SECh. 5.SE - Prob. 4SECh. 5.SE - Prob. 5SECh. 5.SE - Prob. 6SECh. 5.SE - Prob. 7SECh. 5.SE - In Exercises 7-11, use the fact that the matrix...Ch. 5.SE - Prob. 9SECh. 5.SE - In Exercises 7-11, use the fact that the matrix...Ch. 5.SE - In Exercise 7-11, Use the fact that the matrix...Ch. 5.SE - Show that there is a linear transformations T:R2P2...Ch. 5.SE - Prob. 13SECh. 5.SE - Let V be the vector space for all (22) matrices,...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 3CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 5CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 7CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let W be a...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let W be a...Ch. 5.CE - Prob. 13CECh. 5.CE - In Exercise 11-19, give a brief answer. Give...Ch. 5.CE - In Exercise 11-19, give a brief answer. If U and W...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let...Ch. 5.CE - Let T:VW be a linear transformation. a.If T is one...Ch. 5.CE - Prob. 19CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Compare the interest earned from #1 (where simple interest was used) to #5 (where compound interest was used). The principal, annual interest rate, and time were all the same; the only difference was that for #5, interest was compounded quarterly. Does the difference in interest earned make sense? Select one of the following statements. a. No, because more money should have been earned through simple interest than compound interest. b. Yes, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. c. No, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. d. Yes, because more money was earned when compounded quarterly. For compound interest you earn interest on interest, not just on the amount of principal.arrow_forwardCompare and contrast the simple and compound interest formulas. Which one of the following statements is correct? a. Simple interest and compound interest formulas both yield principal plus interest, so you must subtract the principal to get the amount of interest. b. Simple interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest; Compound interest formula yields only interest, which you must add to the principal to get the final amount. c. Simple interest formula yields only interest, which you must add to the principal to get the final amount; Compound interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest. d. Simple interest and compound interest formulas both yield only interest, which you must add to the principal to get the final amount.arrow_forwardSara would like to go on a vacation in 5 years and she expects her total costs to be $3000. If she invests $2500 into a savings account for those 5 years at 8% interest, compounding semi-annually, how much money will she have? Round your answer to the nearest cent. Show you work. Will she be able to go on vacation? Why or why not?arrow_forward
- If $8000 is deposited into an account earning simple interest at an annual interest rate of 4% for 10 years, howmuch interest was earned? Show you work.arrow_forward10-2 Let A = 02-4 and b = 4 Denote the columns of A by a₁, a2, a3, and let W = Span {a1, a2, a̸3}. -4 6 5 - 35 a. Is b in {a1, a2, a3}? How many vectors are in {a₁, a₂, a3}? b. Is b in W? How many vectors are in W? c. Show that a2 is in W. [Hint: Row operations are unnecessary.] a. Is b in {a₁, a2, a3}? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. ○ A. No, b is not in {a₁, a2, 3} since it cannot be generated by a linear combination of a₁, a2, and a3. B. No, b is not in (a1, a2, a3} since b is not equal to a₁, a2, or a3. C. Yes, b is in (a1, a2, a3} since b = a (Type a whole number.) D. Yes, b is in (a1, a2, 3} since, although b is not equal to a₁, a2, or a3, it can be expressed as a linear combination of them. In particular, b = + + ☐ az. (Simplify your answers.)arrow_forward14 14 4. The graph shows the printing rate of Printer A. Printer B can print at a rate of 25 pages per minute. How does the printing rate for Printer B compare to the printing rate for Printer A? The printing rate for Printer B is than the rate for Printer A because the rate of 25 pages per minute is than the rate of for Printer A. pages per minute RIJOUT 40 fy Printer Rat Number of Pages 8N WA 10 30 20 Printer A 0 0 246 Time (min) Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY