Prove that
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
- Find the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forwardIf x and y are elements of an ordered integral domain D, prove the following inequalities. a. x22xy+y20 b. x2+y2xy c. x2+y2xyarrow_forwardRather than use the standard definitions of addition and scalar multiplication in R3, let these two operations be defined as shown below. (a) (x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2) c(x,y,z)=(cx,cy,0) (b) (x1,y1,z1)+(x2,y2,z2)=(0,0,0) c(x,y,z)=(cx,cy,cz) (c) (x1,y1,z1)+(x2,y2,z2)=(x1+x2+1,y1+y2+1,z1+z2+1) c(x,y,z)=(cx,cy,cz) (d) (x1,y1,z1)+(x2,y2,z2)=(x1+x2+1,y1+y2+1,z1+z2+1) c(x,y,z)=(cx+c1,cy+c1,cz+c1) With each of these new definitions, is R3 a vector space? Justify your answers.arrow_forward
- Prove that if A is similar to B and A is diagonalizable, then B is diagonalizable.arrow_forwardDetermine the area of ABC if A=2,1,B=5,3,andC is the reflection of the B across the x-axis.arrow_forwardShow that the three points (x1,y1)(x2,y2) and (x3,y3) in the a plane are collinear if and only if the matrix [x1y11x2y21x3y31] has rank less than 3.arrow_forward
- Consider the matrices below. X=[1201],Y=[1032],Z=[3412],W=[3241] Find scalars a,b, and c such that W=aX+bY+cZ. Show that there do not exist scalars a and b such that Z=aX+bY. Show that if aX+bY+cZ=0, then a=b=c=0.arrow_forwardConsider the vectors u=(6,2,4) and v=(1,2,0) from Example 10. Without using Theorem 5.9, show that among all the scalar multiples cv of the vector v, the projection of u onto v is the closest to u that is, show that d(u,projvu) is a minimum.arrow_forwardLet V be the set of all pairs (x,y) of real numbers together with the following operations: (x1,y1)(x2,y2) = (x1 + x2 − 2, y1 + y2) c(x,y) = = (cx - 2c+2, cy – 5 c + 5). (a) Show that 1 is a scalar multiplication identity, that is: 10(x,y) = (x,y). (b) Explain why V nonetheless is not a vector space. Hint: Check for if scalar multiplication distributes over vector addition.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,