
Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 59, Problem 10SQ
What are the probable causes of a noisy magnet?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The short-circuit test has been carried out on a single-phase transformer of 2500kVA,50kV/10kV, with the following results: 4000V, 50A , 50000 WIt is known that the transformer has a vacuum current equal to 2% and its efficiency at full load fp=1 is 97.5%.
Calculate:
A. Parameters of the excitation branch. Rfe, JXm, Pob. Relative voltage drops. εcc, εrcc, εxcc
Magnetic Field Analysis of a Helical Coil
In this lab you will analyse the inductive coil structure shown in Figure 1. It comprises a solid
round copper wire of radius a = 0.8mm, wound into a cylindrical spiral having N = 20 turns, major
radius R = 10mm and an axial pitch p = 2mm. The coil is excited by a dc current of 1A.
R
P
1
(a) Analytic Calculations
Figure 1: Helical Air-cored Coil
Using the expressions developed in the class, estimate the magnetic flux density B at the centre of
the coil. Recall from EN1216 that for a long solenoid, the flux density is given by:
HONI
B
l
As we saw in the class (see section 4) a modified expression can also be derived that eliminates
the need for the 'long' solenoid assumption:
R
α1
Р
â
B =
HONI
2l
(cosa₂-cosα1)
1
Compare the results obtained using equations (1) and (2) and state which solution you would
expect to give the best approximation to the real coil behaviour.
I need immediate help with my SIMULINK model. I don't know why but no matter how much a increase or decrease Kc or TI, the graphs are the same. C'A0(s) is the disturbance going through G'D(s). Please check my transfer function blocks by taking the laplace transform of the equations. Any suggestions is welcome greatly! thanks
Chapter 59 Solutions
Electric Motor Control
Ch. 59 - Prob. 1SQCh. 59 - Why should the motor be run for a period of time...Ch. 59 - What may occur if a jumper is placed across coil M...Ch. 59 - In what position do ball-bearing motors function?Ch. 59 - Motors will operate satisfactorily at what percent...Ch. 59 - What basic sensory faculties should a...Ch. 59 - What is an orderly step-by-step procedure in...Ch. 59 - What might be a hazard if a motor is started in...Ch. 59 - Prob. 9SQCh. 59 - What are the probable causes of a noisy magnet?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- P 4.4-22 Determine the values of the node voltages V1, V2, and v3 for the circuit shown in Figure P 4.4-22. 202 ww 4ia 202 w + + ±12 V V₁ ΖΩ V2 ΖΩ V3 11 A + 하arrow_forward3. An inifinite sheet of charge density of 3 nC/m² is located at x=-1m. An infinite line of charge density 1 nC/m is parallel to the the z-axis and intersect the y-axis at y=-1m. (a) What is the electric field vector at (0, 0, 0), assuming & = ε0? (b) What is the region in space where the field is zero?arrow_forwardFind the valve of voltage Vx using SUPERPOSITION 1 M FA www 4 5 M MAA 12V - $10 33 M 23 +x mn 6 8Aarrow_forward
- Find the Valve of Voltage Vy using SUPERPOSITION الله 8 ZV ДАДА 6 5 ча 4 w 3 1 mm 2A MWarrow_forwardFind the value of voltage Using SUPER POSITION. GV www 6 M 33 ww ЧА 5. 123 AM 4 4 ۱۹۷arrow_forwardPlease explain in detail. I am most confused on how to get the transfer functions. thank youarrow_forward
- Please explain step by step in detail. I am most confused about the table. Thank youarrow_forwardUsing the block diagram or solution, show that the expected gain in the transfer function CA' (s)/Q'(s) is negative. Please explain how to approach this. No typed answers where the equation is in one line and it's hard to understand, please дома dela 1 C_AO G2(s) G3(5) dCA(t) dt dT' (t) dt = 2 Q beta 3-a G1(s) G4(s) (-AHko E koe RT + EKOČA RT2 E e E F T' (t) + Co (t) E 1 (All) (- -)+(y) = pcp eRT CA(t) + Е КОСАДНЕ PCPRT2 eRT T'(t) + Q'(t) 2 Tarrow_forwardplease explain in detail. I am most confused about 3.2 and 3.3. thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning


Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY