Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 59, Problem 9SQ
To determine
List the probable causes for the failure of a coil to pick up.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve question 1
For the system below: if
==
m₁ =m₂ = 1 kg. k₁ = k₂ =1 Nm1, b = 20 N/ms";
then:
1) Find the transfer function ()
f(s)
2) Check the stability by Routh criteria method.
If you have T.F.C.L.=
k
then:
s2+2 5+k
•
1) Find the open loop G(s).
2) Determine Steady state error for (unit step, ramp input, and acceleration input)
3) If es = 0.2, for ramp input, then find k,wn, 8.
4) For values in (3), then find t,,,,t, and M..
5) For values in (4), then plot transient response with these values.
Chapter 59 Solutions
Electric Motor Control
Ch. 59 - Prob. 1SQCh. 59 - Why should the motor be run for a period of time...Ch. 59 - What may occur if a jumper is placed across coil M...Ch. 59 - In what position do ball-bearing motors function?Ch. 59 - Motors will operate satisfactorily at what percent...Ch. 59 - What basic sensory faculties should a...Ch. 59 - What is an orderly step-by-step procedure in...Ch. 59 - What might be a hazard if a motor is started in...Ch. 59 - Prob. 9SQCh. 59 - What are the probable causes of a noisy magnet?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2) A. A three phase half wave controlled rectifier shown in fig (1) with a delay angle a, the input voltages are specified as va=100 cos(wt), v = 100 cos(wt + 120°), vc = 100cos (wt-120°) 1) Draw the average output voltage for a = 0°,30° and 60°. 2) Draw the la, land i, for each a 3) Calculate the average output voltage for each a n Va Vs Th, * Thz D Th3 R لے E Loadarrow_forwardI hope the solution is on paper and not by artificial intelligencearrow_forwardObtain the number of roots in the RHP of D(s)=s+s+ 6s+5s3 + 10 s2 +58 +5arrow_forward
- For circuit below, if L = 0.5H, R=10,C=2, then 1) Find the transfer function Vo(s) u(s) of circuit below. 2) if u = k(v(t)- v,(t)), for feedback is added, find the value of k if peak overshoot is 0.2. 3) if u=(v(t)- v,(t)), for feedback is added, find the value of k if ess 0.2 for ramp input. - 4) if u = (1) ((t) vo(t)). Check the stability with varying the value of k for characteristic equation. R Votarrow_forwardThe question was sent hours ago and you sent an unclear answer. I hope the solution is on the paper and clear.arrow_forwardThe control system, shown in Fig. below, is subjected to a unit ramp function, a) Determine the value of k and k, such that the system has an overshoot of 16.303% and a damped natural frequency of 3.4641 rad/sec. b) Calculate the rise time, peak time and settling time. c) Define the system type d) Calculate the steady-state error of that system R(s) K (x+2) K ((s)arrow_forward
- Consider the circuit shown below, Vac 0- H Vdc ли R1 R2 where R₁ = 2.2KQ, R₂ = 4.7KQ, C = 0.1uF, Vdc = +5V, and Vac = 3V peak f = 1KHz. • Use superposition to calculate the DC voltage at point X; VDC = • Use superposition to calculate the AC (peak) voltage at point X; VAC =arrow_forwardQ2/ An air-filled rectangular waveguide is to be used to transmit signals at a carrier frequency of 6 GHz. Choose its dimensions so that the cutoff frequency of the dominant TE mode is 80% of the carrier frequency 6GHz and that of the TE01 is 70%.arrow_forwardA three-phase half-wave converter in Figure 2 is operated from a three- phase Y-connected 208-V, 60-Hz supply and the load resistance is R = 10 2. If it is required to obtain an average output voltage of 50% of the maximum possible output voltage, calculate (a) the delay angle a. (b) the rms and average output currents. (c) the average and rms thyristor currents. (d) the rectification efficiency. a T₁ Van T₂ vbn Vcn m b K T3 * Fig.2 Vo fuw me ic R Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you