Concept explainers
Interpretation:
Among the given quantities which one is one mole each of Helium and Chlorine gas equal to each other have to be identified.
Concept Introduction:
Root mean-square speed is the parameter to measure the speed of particles in a gas. M is the molecular mass of the molecule at temperature T, root mean-square speed (
Graham's law of effusion told as the rates of effusion of two different gases vary inversely as the square roots of the mass of their particles.
The rate of effusion is the number of molecules passing through a porous barrier in a given time. The longer it takes, the slower the rate of effusion.
Using given equation we find the molar mass of unknown gas
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Chemistry
- Ethanol, C2H5OH, is produced industrially from ethylene, C2H4, by the following sequence of reactions: 3C2H4+2H2SO4C2H5HSO4+( C 2 H 5)2SO4C2H5HSO4+( C 2 H 5)2SO4+3H2O3C2H5OH+2H2SO4 What volume of ethylene at STP is required to produce 1.000 metric ton (1000 kg) of ethanol if the overall yield of ethanol is 90.1%?arrow_forward54 One way to generate oxygen is to heat potassium chlorate, KClO3. (The other product is potassium chloride.) If 386 mL of oxygen at 41 C and 97.8 kPa is generated by this reaction, what is the minimum mass of KClO3used?arrow_forwardAs 1 g of (lie radioactive element radium decays over 1 year. k produces 1.161018 alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure ¡n pascal of the helium gas produced if it occupies a volume of 125 mL at a temperature of 25 C?arrow_forward
- A 19.9-mL volume of a hydrochloric acid solution reacts completely with a solid sample of magnesium carbonate, producing 183 mL of CO2 that is collected over water at 24.0C and 738 torr total pressure. The reaction is 2HCl(aq)+MgCO3(s)CO2(g)+H2O(l)+MgCl2(aq) What is the molarity of the HCl solution?arrow_forwardHeating potassium chlorate, KClO3, yields oxygen gas and potassium chloride. What volume, in liters, of oxygen at 23 C and 760 torr is produced by the decomposition of 4.42 g potassium chlorate?arrow_forward50 The first step in processing zinc metal from its ore, ZnS, is to react it with O2 according to the reaction 2ZnS(s)+3O2(g)2ZnO(s)+2SO2(g) If 620 kg of ZnS is to be reacted, what volume of oxygen at 0.977 atm 34.0 C is needed (at a minimum) to carry out this reaction?arrow_forward
- Sulfur trioxide, SO3, is produced in enormous quantities each year for use in the synthesis of sulfuric acid. S(s)+O2(g)SO2(g)2SO2(g)+O2(g)2SO3(g) What volume of O2(g) at 350.C and a pressure of 5.25 atm is needed to completely convert 5.00 g sulfur to sulfur trioxide?arrow_forwardA 275-mL sample of CO gas is collected over water at 31C and 755 mmHg. If the temperature of the gas collection apparatus rises to 39C, what is the new volume of the sample? Assume that the barometric pressure does not change.arrow_forwardTwo identical He-filled balloons, each with a volume of 20 L, are allowed to rise into the atmosphere. One rises to an altitude of 3000 m while the other rises to 6000 m. a Assuming that the balloons are at the same temperature, which balloon has the greater volume? b What information would you need in order to calculate the volume of each of the balloons at their respective heights?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning