
(A)
Interpretation:
The flow rate of refrigerant. Is it the same or different in the two cycles?
Concept Introduction:
The equation of energy balance on the condenser is,
Here, time is
(B)
Interpretation:
The compressor work for each of the two possible compressors.
Concept Introduction:
The equation of generalized entropy balance is,
Here, time is t, mass of the system is M, specific entropy of the system is
The expression to obtain the compressor work rate with 80% efficiency is,
The expression to obtain the compressor work with 80% efficiency is,
(C)
Interpretation:
The coefficient of performance for the cycle.
Concept Introduction:
The expression to obtain the coefficient of performance
The expression to obtain the coefficient of performance
(D)
Interpretation:
How long the system would the system have to run in order for the higher-efficiency compressor to be cost effective?
Concept Introduction:
The expression to obtain the time

Trending nowThis is a popular solution!

Chapter 5 Solutions
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
- The following chemical reaction takes place at 500K and 1 atm and the products leaves at 1000K aCH4 + b(O2 + 3.76N2)=7.7CO2 + 0.5CO + 2CH4+2.95O2 + 86.85N2 + cH2O use the specific heat capacity given in Table A-21 (Moran and Shapiro, page 755) and the heat of formation given in Tabble A-25 (Moran and Shapiro, page 763) determine: 1. The stoichiometric coefficients (a, b, and c) 2. The air-fuel ratio on a molar basis 3. The air-fuel ratio on a mass basis 4. The stoichiometric air fuel ratio 5. The excess air (%) 6. The lower heating value 7. The rate of heat transfer from the combustion chamber.arrow_forward3. Nitric oxide is produced in the body by several different enzymes and acts as a signal that controls blood pressure, long-term memory, and other critical functions. The major route for removing NO from biological fluids is via reaction with O2 to give NO₂ 2NO(g) + O2(g) → 2NO2(g) The following table lists kinetics data for the reaction of NO with O2 at 25°C: Experiment 1 [NO] (M) 0.0235 2 0.0235 3 0.0470 4 0.0470 (a) Determine the rate law for the reaction (b) calculate the rate constant. [02]0 (M) Initial Rate (M/s) 0.0125 7.98 × 10-3 0.0250 15.9 × 10-3 0.0125 32.0 × 10-3 0.0250 63.5 x 10-3 5:32arrow_forwardA closed system of 122 moles of an ideal gas with constant-pressure heat capacity of cp = 2.5R expands isobarically from 52°C and 4.9 bar to 137°C, with a thermodynamic efficiency of 0.74. How much total work is involved in this process? Please report your answer to the nearest whole kJ and don't forget the sign: "-" if the work is negative, no sign if the work is positive.arrow_forward
- Liquid toluene at 20°C is reversibly and isothermally compressed from 2.94 bar to 7.7 bar. What is the specific work, in J/kg, required to accomplish this? Some properties of liquid toluene at 20°C: β = 1.05 x 10-3 ºC-1 , κ = 8.96 x 10-5 bar-1 , V = 1154 cm3 kg-1. Please report your answer to 3 SF. Be very, very careful of units!arrow_forward132 kJ of work is transferred from a system to its surroundings in a reversible process to get it from state A to state B. If a similar but irreversible process is performed from state A to state B with a thermodynamic efficiency of 0.73, how much work will be transferred, in kJ? Be sure to include the correct sign on your answer: if it is positive, do NOT include a "+", but if it is negative you MUST include a "−" sign.arrow_forward2- What will be the power required to crush 150 tonnes per hour of limestone if 80 percent of the feed passes 50 mm screen and 80 percent of the product a 3.125 mm screen? Work index of limestone 12.74.arrow_forward
- 3- A certain crusher accepts a feed material having a volume-surface mean diameter of 19 mm and gives a product of volume-surface mean diameter of 5 mm. The power required to crush 15 tonnes per hour is 7.5 kW. What will be the power consumption if the capacity is reduced to 12 tonnes per hour?arrow_forwardCR = CAOK1 K2-K1 - Cs CAO CR - CA = [e-k₁t + e-k₂t] --(6) Cs = Cao CAO 1+ K₂e-kit K₁e-k2t + K1-K2 K₂-K1 By differentiating eq (6) and set to zero (dCR = 0), the time at which concentration of R occurs is thus: dT K2 1 In Ki K1 tmax K₂-K1 Klogmean (7) Equation 7. Prove that?arrow_forwardQuestion #6 a) Draw a simple block flow diagram of a petroleum refinery consisting of following sections. 1. Atmospheric and vacuum distillation 2. Hydrotreating of diesel steam 3. Hydrocracking of LVGO Show main product streams from each unit. (8)arrow_forward
- Phosphate often needs to be removed from wastewater because it will cause eutrophication of receiving waters. At the Paso Robles Wastewater Treatment plant, they add MgCl2 to the pressate (concentrated liquid pressed from sludge) to precipitate phosphate as the mineral struvite. Struvite is formed by the reaction of phosphate with magnesium ions and ammonium, and the solubility product for struvite is 5.5x10-14. The ammonium concentration is very high at 300 mg N-NH4/L because the sludge is coming from an anaerobic digester. What minimum amount of MgCl2 (in mg/L) would be needed to precipitate all but 1 mg/L phosphate? Struvite precipitates by the following reaction: Mg++NH] +PO →MgNH PO 4 4 4arrow_forward· What is the pH of the following solutions? a) 1.0 M HCI (strong acid) b) 50 mg/L NaOH (strong base) • c) 0.10 M acetic acid (Ka = 1.75x10-5)arrow_forwardA drinking water sample has 500 mg/L NaCl and 100 mg/L CaCO3. A. Calculate the ionic strength assuming no other ions present. B. What would be the activity coefficient for Pb2+ in this water? C. For a lead concentration of 15 ppb (SDWA standard), what would be the molarity and activity of the lead in this bottled water?arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





