
EBK LINEAR ALGEBRA AND ITS APPLICATIONS
6th Edition
ISBN: 9780135851043
Author: Lay
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.7, Problem 10E
In Exercises 9–18, construct the general solution of x′ = Ax involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.
10. A =
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The Course Name Real Analysis please Solve questions by Real Analysis
part 3 of the question is:
A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes.
What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model.
Will the last passenger to board the ride need to wait in order to exit the ride? Explain.
2. The duration of the ride is 15 min.
(a) How many times does the last passenger who boarded the ride make a complete loop on the Ferris
wheel?
(b) What is the position of that passenger when the ride ends?
Chapter 5 Solutions
EBK LINEAR ALGEBRA AND ITS APPLICATIONS
Ch. 5.1 - Is 5 an eigenvalue of A=[631305226]?Ch. 5.1 - If x is an eigenvector of A corresponding to ,...Ch. 5.1 - Suppose that b1 and b2 are eigenvectors...Ch. 5.1 - If A is an n n matrix and is an eigenvalue of A,...Ch. 5.1 - Is = 2 an eigenvalue of [3238]? Why or why not?Ch. 5.1 - Is = 2 an eigenvalue of [7331]? Why or why not?Ch. 5.1 - Is [14] an eigenvalue of [3138]? If so, find the...Ch. 5.1 - Is [431] an eigenvalue of [379451244]? If so, find...Ch. 5.1 - Prob. 6ECh. 5.1 - Is = 4 an eigenvalue of [301231345]? If so, find...
Ch. 5.1 - Is = 3 an eigenvalue of [122321011]? If so, find...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - Prob. 12ECh. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - For A=[123123123], find one eigenvalue, with no...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - Prob. 25ECh. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Explain why a 2 2 matrix can have at most two...Ch. 5.1 - Construct an example of a 2 2 matrix with only...Ch. 5.1 - Let be an eigenvalue of an invertible matrix A....Ch. 5.1 - Show that if A2 is the zero matrix, then the only...Ch. 5.1 - Show that is an eigenvalue of A if and only if ...Ch. 5.1 - Consider an n n matrix A with the property that...Ch. 5.1 - In Exercises 31 and 32, let A be the matrix of the...Ch. 5.1 - T is the transformation on 3 that rotates points...Ch. 5.1 - Let u and v be eigenvectors of a matrix A, with...Ch. 5.1 - Describe how you might try to build a solution of...Ch. 5.1 - Let u and v be the vectors shown in the figure,...Ch. 5.2 - Find the characteristic equation and eigenvalues...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Prob. 6ECh. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 9—14 require techniques from Section...Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Prob. 14ECh. 5.2 - For the matrices in Exercises 1517, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - It can be shown that the algebraic multiplicity of...Ch. 5.2 - Let A be an n n matrix, and suppose A has n real...Ch. 5.2 - Use a property of determinants to show that A and...Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - Prob. 25ECh. 5.2 - A widely used method for estimating eigenvalues of...Ch. 5.2 - Show that if A and B are similar, then det A = det...Ch. 5.3 - Compute A8, where A = [4321].Ch. 5.3 - Let A = [31227], v1 = [31], and v2 = [21]. Suppose...Ch. 5.3 - Let A be a 4 4 matrix with eigenvalues 5, 3, and...Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 3 and 4, use the factorization A =...Ch. 5.3 - Prob. 4ECh. 5.3 - In Exercises 5 and 6. the matrix A is factored in...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - A is a 5 5 matrix with two eigenvalues. One...Ch. 5.3 - A is a 3 3 matrix with two eigenvalues. Each...Ch. 5.3 - A is a 4 4 matrix with three eigenvalues. One...Ch. 5.3 - A is a 7 7 matrix with three eigenvalues. One...Ch. 5.3 - Show that if A is both diagonalizable and...Ch. 5.3 - Show that if A has n linearly independent...Ch. 5.3 - A factorization A = PDP1 is not unique....Ch. 5.3 - With A and D as in Example 2, find an invertible...Ch. 5.3 - Construct a nonzero 2 2 matrix that is invertible...Ch. 5.3 - Construct a nondiagonal 2 2 matrix that is...Ch. 5.4 - Find T(a0 + a1t + a1t2), if T is the linear...Ch. 5.4 - Let A, B, and C be n n matrices. The text has...Ch. 5.4 - Let B = b1,b2,b3 and D = d1,d2 be bases for vector...Ch. 5.4 - Assume the mapping T : 2 2 defined by T(a0 + a1t...Ch. 5.4 - Prob. 4ECh. 5.4 - Let B = {b1, b2, b3} be a basis for a vector space...Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - Let A = [1113] and B = {b1, b2}, for b1 = [11], b2...Ch. 5.4 - Define T : 3 3 by T (x) = Ax, where A is a 3 3...Ch. 5.5 - Show that if a and b are real, then the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Example 2, solve the first equation in (2) for...Ch. 5.5 - Let A be a complex (or real) n n matrix, and let...Ch. 5.5 - Let A be a real n n matrix, and let x be a vector...Ch. 5.5 - Let A be a real 2 2 matrix with a complex...Ch. 5.6 - The matrix A below has eigenvalues 1, 23, and 13,...Ch. 5.6 - What happens to the sequence {xk } in Practice...Ch. 5.6 - Let A be a 2 2 matrix with eigenvalues 3 and 1/3...Ch. 5.6 - Suppose the eigenvalues of a 3 3 matrix A are 3,...Ch. 5.6 - In Exercises 36, assume that any initial vector x0...Ch. 5.6 - Determine the evolution of the dynamical system in...Ch. 5.6 - In old-growth forests of Douglas fir, the spotted...Ch. 5.6 - Show that if the predation parameter p in Exercise...Ch. 5.6 - Let A have the properties described in Exercise 1....Ch. 5.6 - Prob. 8ECh. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - Let A = [.40.2.3.8.3.3.2.5]. The vector v1 = [163]...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i,...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i....Ch. 5.7 - A real 3 3 matrix A has eigenvalues 5, .2 + .3i,...Ch. 5.7 - A panicle moving in a planar force field has a...Ch. 5.7 - Let A be a 2 2 matrix with eigenvalues 3 and 1...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 (as...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 for...Ch. 5.7 - [M] Find formulas for the current it and the...Ch. 5.7 - [M] The circuit in the figure is described by the...Ch. 5.8 - How can you tell if a given vector x is a good...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - Let A = [15162021]. The vectors x, , A5x are...Ch. 5.8 - Let A = [2367]. Repeat Exercise 5, using the...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Suppose Ax = x with x 0. Let or be a scalar...Ch. 5.8 - Suppose n is an eigenvalue of the B in Exercise...Ch. 5.8 - A common misconception is that if A has a strictly...Ch. 5 - Show that if x is an eigenvector of the matrix...Ch. 5 - Suppose x is an eigenvector of A corresponding to...Ch. 5 - Use mathematical induction to show that if is an...Ch. 5 - If p(t) = c0 + c1t + c2t2 + + cntn, define p(A)...Ch. 5 - Suppose A is diagonalizable and p(t) is the...Ch. 5 - a. Let A be a diagonalizable n n matrix. Show...Ch. 5 - Show that I A is invertible when all the...Ch. 5 - Show that if A is diagonalizable, with all...Ch. 5 - Let u be an eigenvector of A corresponding to an...Ch. 5 - Let G = [AX0B] Use formula (1) for the determinant...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Let A = [.4.3.41.2]. Explain why Ak approaches...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Use mathematical induction to prove that for n 2,...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...
Additional Math Textbook Solutions
Find more solutions based on key concepts
(a) Make a stem-and-leaf plot for these 24 observations on the number of customers who used a down-town CitiBan...
APPLIED STAT.IN BUS.+ECONOMICS
Check Your Understanding
Reading Check Complete each sentence using > or < for □.
RC1. 3 dm □ 3 dam
Basic College Mathematics
True or False The quotient of two polynomial expressions is a rational expression, (p. A35)
Precalculus
The largest polynomial that divides evenly into a list of polynomials is called the _______.
Elementary & Intermediate Algebra
23. A plant nursery sells two sizes of oak trees to landscapers. Large trees cost the nursery $120 from the gro...
College Algebra (Collegiate Math)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 3. A scientist recorded the movement of a pendulum for 10 s. The scientist began recording when the pendulum was at its resting position. The pendulum then moved right (positive displacement) and left (negative displacement) several times. The pendulum took 4 s to swing to the right and the left and then return to its resting position. The pendulum's furthest distance to either side was 6 in. Graph the function that represents the pendulum's displacement as a function of time. Answer: f(t) (a) Write an equation to represent the displacement of the pendulum as a function of time. (b) Graph the function. 10 9 8 7 6 5 4 3 2 1 0 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -1 -5. -6 -7 -8 -9 -10-arrow_forwardA power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. (a) What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. (b) Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardThe Colossus Ferris wheel debuted at the 1984 New Orleans World's Fair. The ride is 180 ft tall, and passengers board the ride at an initial height of 15 ft above the ground. The height above ground, h, of a passenger on the ride is a periodic function of time, t. The graph displays the height above ground of the last passenger to board over the course of the 15 min ride. Height of Passenger in Ferris Wheel 180 160 140- €120 Height, h (ft) 100 80 60 40 20 0 ך 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time of operation, t (min) Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the period of the sine function model? Interpret the period you found in the context of the operation of the Ferris wheel. Answer:arrow_forward
- 1. Graph the function f(x)=sin(x) −2¸ Answer: y -2π 一元 1 −1 -2 -3 -4+ 元 2πarrow_forward3. Graph the function f(x) = −(x-2)²+4 Answer: f(x) 6 5 4 3 2+ 1 -6-5 -4-3-2-1 × 1 2 3 4 5 6 -1 -2+ ရာ -3+ -4+ -5 -6arrow_forward2. Graph the function f(x) = cos(2x)+1 Answer: -2π 一元 y 3 2- 1 -1 -2+ ရာ -3- Π 2πarrow_forward
- 2. Graph the function f(x) = |x+1+2 Answer: -6-5-4-3-2-1 f(x) 6 5 4 3 2 1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6arrow_forward1. The table shows values of a function f(x). What is the average rate of change of f(x) over the interval from x = 5 to x = 9? Show your work. X 4 f(x) LO 5 6 7 8 9 10 -2 8 10 11 14 18arrow_forward• Find a real-world situation that can be represented by a sinusoidal function. You may find something online that represents a sinusoidal graph or you can create a sinusoidal graph yourself with a measuring tape and a rope. • Provide a graph complete with labels and units for the x- and y-axes. • Describe the amplitude, period, and vertical shift in terms of the real-world situation.arrow_forward
- f(x) = 4x²+6x 2. Given g(x) = 2x² +13x+15 and find 41 (4)(x) Show your work.arrow_forwardf(x) = x² − 6x + 8 3. Given and g(x) = x -2 solve f(x) = g(x) using a table of values. Show your work.arrow_forward1. Graph the function f(x) = 3√x-2 Answer: -6-5 -4-3-2 -1 6 LO 5 f(x) 4 3 2+ 1 1 2 3 4 5 6 -1 -2+ -3 -4 -5 -6- 56arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY