EBK LINEAR ALGEBRA AND ITS APPLICATIONS
6th Edition
ISBN: 9780135851043
Author: Lay
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.3, Problem 31E
A is a 4 × 4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is nor diagonalizable? Justify your answer.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:33
Students have asked these similar questions
How long is a guy wire reaching from the top of a
15-foot pole to a point on the ground
9-feet from the pole?
Question content area bottom
Part 1
The guy wire is exactly
feet long.
(Type an exact answer, using radicals as needed.)
Part 2
The guy wire is approximatelyfeet long.
(Round to the nearest thousandth.)
Question 6
Not yet
answered
Marked out of
5.00
Flag question
=
If (4,6,-11) and (-12,-16,4),
=
Compute the cross product vx w
k
Consider the following vector field v^-> (x,y):
v^->(x,y)=2yi−xj
What is the magnitude of the vector v⃗ located in point (13,9)?
[Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]
Chapter 5 Solutions
EBK LINEAR ALGEBRA AND ITS APPLICATIONS
Ch. 5.1 - Is 5 an eigenvalue of A=[631305226]?Ch. 5.1 - If x is an eigenvector of A corresponding to ,...Ch. 5.1 - Suppose that b1 and b2 are eigenvectors...Ch. 5.1 - If A is an n n matrix and is an eigenvalue of A,...Ch. 5.1 - Is = 2 an eigenvalue of [3238]? Why or why not?Ch. 5.1 - Is = 2 an eigenvalue of [7331]? Why or why not?Ch. 5.1 - Is [14] an eigenvalue of [3138]? If so, find the...Ch. 5.1 - Is [431] an eigenvalue of [379451244]? If so, find...Ch. 5.1 - Prob. 6ECh. 5.1 - Is = 4 an eigenvalue of [301231345]? If so, find...
Ch. 5.1 - Is = 3 an eigenvalue of [122321011]? If so, find...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - Prob. 12ECh. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - For A=[123123123], find one eigenvalue, with no...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - Prob. 25ECh. 5.1 - In Exercises 21—30, A is an nn matrix. Mark each...Ch. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Explain why a 2 2 matrix can have at most two...Ch. 5.1 - Construct an example of a 2 2 matrix with only...Ch. 5.1 - Let be an eigenvalue of an invertible matrix A....Ch. 5.1 - Show that if A2 is the zero matrix, then the only...Ch. 5.1 - Show that is an eigenvalue of A if and only if ...Ch. 5.1 - Consider an n n matrix A with the property that...Ch. 5.1 - In Exercises 31 and 32, let A be the matrix of the...Ch. 5.1 - T is the transformation on 3 that rotates points...Ch. 5.1 - Let u and v be eigenvectors of a matrix A, with...Ch. 5.1 - Describe how you might try to build a solution of...Ch. 5.1 - Let u and v be the vectors shown in the figure,...Ch. 5.2 - Find the characteristic equation and eigenvalues...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Prob. 6ECh. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 9—14 require techniques from Section...Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Prob. 14ECh. 5.2 - For the matrices in Exercises 1517, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - It can be shown that the algebraic multiplicity of...Ch. 5.2 - Let A be an n n matrix, and suppose A has n real...Ch. 5.2 - Use a property of determinants to show that A and...Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - In Exercises 21—30, A and B are nn matrices....Ch. 5.2 - Prob. 25ECh. 5.2 - A widely used method for estimating eigenvalues of...Ch. 5.2 - Show that if A and B are similar, then det A = det...Ch. 5.3 - Compute A8, where A = [4321].Ch. 5.3 - Let A = [31227], v1 = [31], and v2 = [21]. Suppose...Ch. 5.3 - Let A be a 4 4 matrix with eigenvalues 5, 3, and...Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 3 and 4, use the factorization A =...Ch. 5.3 - Prob. 4ECh. 5.3 - In Exercises 5 and 6. the matrix A is factored in...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - A is a 5 5 matrix with two eigenvalues. One...Ch. 5.3 - A is a 3 3 matrix with two eigenvalues. Each...Ch. 5.3 - A is a 4 4 matrix with three eigenvalues. One...Ch. 5.3 - A is a 7 7 matrix with three eigenvalues. One...Ch. 5.3 - Show that if A is both diagonalizable and...Ch. 5.3 - Show that if A has n linearly independent...Ch. 5.3 - A factorization A = PDP1 is not unique....Ch. 5.3 - With A and D as in Example 2, find an invertible...Ch. 5.3 - Construct a nonzero 2 2 matrix that is invertible...Ch. 5.3 - Construct a nondiagonal 2 2 matrix that is...Ch. 5.4 - Find T(a0 + a1t + a1t2), if T is the linear...Ch. 5.4 - Let A, B, and C be n n matrices. The text has...Ch. 5.4 - Let B = b1,b2,b3 and D = d1,d2 be bases for vector...Ch. 5.4 - Assume the mapping T : 2 2 defined by T(a0 + a1t...Ch. 5.4 - Prob. 4ECh. 5.4 - Let B = {b1, b2, b3} be a basis for a vector space...Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - Let A = [1113] and B = {b1, b2}, for b1 = [11], b2...Ch. 5.4 - Define T : 3 3 by T (x) = Ax, where A is a 3 3...Ch. 5.5 - Show that if a and b are real, then the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Example 2, solve the first equation in (2) for...Ch. 5.5 - Let A be a complex (or real) n n matrix, and let...Ch. 5.5 - Let A be a real n n matrix, and let x be a vector...Ch. 5.5 - Let A be a real 2 2 matrix with a complex...Ch. 5.6 - The matrix A below has eigenvalues 1, 23, and 13,...Ch. 5.6 - What happens to the sequence {xk } in Practice...Ch. 5.6 - Let A be a 2 2 matrix with eigenvalues 3 and 1/3...Ch. 5.6 - Suppose the eigenvalues of a 3 3 matrix A are 3,...Ch. 5.6 - In Exercises 36, assume that any initial vector x0...Ch. 5.6 - Determine the evolution of the dynamical system in...Ch. 5.6 - In old-growth forests of Douglas fir, the spotted...Ch. 5.6 - Show that if the predation parameter p in Exercise...Ch. 5.6 - Let A have the properties described in Exercise 1....Ch. 5.6 - Prob. 8ECh. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - Let A = [.40.2.3.8.3.3.2.5]. The vector v1 = [163]...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i,...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i....Ch. 5.7 - A real 3 3 matrix A has eigenvalues 5, .2 + .3i,...Ch. 5.7 - A panicle moving in a planar force field has a...Ch. 5.7 - Let A be a 2 2 matrix with eigenvalues 3 and 1...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 (as...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 for...Ch. 5.7 - [M] Find formulas for the current it and the...Ch. 5.7 - [M] The circuit in the figure is described by the...Ch. 5.8 - How can you tell if a given vector x is a good...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - Let A = [15162021]. The vectors x, , A5x are...Ch. 5.8 - Let A = [2367]. Repeat Exercise 5, using the...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Suppose Ax = x with x 0. Let or be a scalar...Ch. 5.8 - Suppose n is an eigenvalue of the B in Exercise...Ch. 5.8 - A common misconception is that if A has a strictly...Ch. 5 - Show that if x is an eigenvector of the matrix...Ch. 5 - Suppose x is an eigenvector of A corresponding to...Ch. 5 - Use mathematical induction to show that if is an...Ch. 5 - If p(t) = c0 + c1t + c2t2 + + cntn, define p(A)...Ch. 5 - Suppose A is diagonalizable and p(t) is the...Ch. 5 - a. Let A be a diagonalizable n n matrix. Show...Ch. 5 - Show that I A is invertible when all the...Ch. 5 - Show that if A is diagonalizable, with all...Ch. 5 - Let u be an eigenvector of A corresponding to an...Ch. 5 - Let G = [AX0B] Use formula (1) for the determinant...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Let A = [.4.3.41.2]. Explain why Ak approaches...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Use mathematical induction to prove that for n 2,...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...
Additional Math Textbook Solutions
Find more solutions based on key concepts
1. How many solutions are there to ax + b = 0 with ?
College Algebra with Modeling & Visualization (5th Edition)
In Exercises 29–32, indicate whether the observational study used is cross-sectional, retrospective, or prospec...
Elementary Statistics (13th Edition)
Write a sentence that illustrates the use of 78 in each of the following ways. a. As a division problem. b. As ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Find how many SDs above the mean price would be predicted to cost.
Intro Stats, Books a la Carte Edition (5th Edition)
aboutthe number of malls in New York and Ohio
Pre-Algebra Student Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forwardQuestion 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forwardAssume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forward
- Select the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forwardWhich of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward
- (20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forwardAssume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forward
- Assume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forwardSolve for the matrix X: X (2 7³) x + ( 2 ) - (112) 6 14 8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY