Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.6, Problem 30P
Program Plan Intro
Program Description: Purpose of the problem is to solve the initial value problem by the use of sum of a nilpotent matrix and a multiple of the identity matrix.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve.
Consider the system of linear equations
X2 + 2x3
X4
-1
X1
X2
X3
-X1
X2 +
X3
+ 3.x4
1
-
Xị + 2x2
X4
9
Use Matlab to find the LU decomposition of the coefficient matrix A and then solve
the resulting triangular system using forward and backward substitutions
programs. (You need to provide the codes)
Problem 4 (Parameterization of a Rotation Matrix Using ZYZ Euler Angles): Given a rotation
matrix R as shown below, find the ZYZ Euler angle representation of R. Notice there are two sets
of solutions.
Chapter 5 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 5.1 - Let A=[2347] and B=[3451]. Find (a) 2A+3B; (b)...Ch. 5.1 - Prob. 2PCh. 5.1 - Find AB and BA given A=[203415] and B=[137032].Ch. 5.1 - Prob. 4PCh. 5.1 - Prob. 5PCh. 5.1 - Prob. 6PCh. 5.1 - Prob. 7PCh. 5.1 - Prob. 8PCh. 5.1 - Prob. 9PCh. 5.1 - Prob. 10P
Ch. 5.1 - Prob. 11PCh. 5.1 - Prob. 12PCh. 5.1 - Prob. 13PCh. 5.1 - Prob. 14PCh. 5.1 - Prob. 15PCh. 5.1 - Prob. 16PCh. 5.1 - Prob. 17PCh. 5.1 - Prob. 18PCh. 5.1 - Prob. 19PCh. 5.1 - Prob. 20PCh. 5.1 - Prob. 21PCh. 5.1 - Prob. 22PCh. 5.1 - Prob. 23PCh. 5.1 - Prob. 24PCh. 5.1 - Prob. 25PCh. 5.1 - Prob. 26PCh. 5.1 - Prob. 27PCh. 5.1 - Prob. 28PCh. 5.1 - Prob. 29PCh. 5.1 - Prob. 30PCh. 5.1 - Prob. 31PCh. 5.1 - Prob. 32PCh. 5.1 - Prob. 33PCh. 5.1 - Prob. 34PCh. 5.1 - Prob. 35PCh. 5.1 - Prob. 36PCh. 5.1 - Prob. 37PCh. 5.1 - Prob. 38PCh. 5.1 - Prob. 39PCh. 5.1 - Prob. 40PCh. 5.1 - Prob. 41PCh. 5.1 - Prob. 42PCh. 5.1 - Prob. 43PCh. 5.1 - Prob. 44PCh. 5.1 - Prob. 45PCh. 5.2 - Prob. 1PCh. 5.2 - Prob. 2PCh. 5.2 - Prob. 3PCh. 5.2 - Prob. 4PCh. 5.2 - Prob. 5PCh. 5.2 - Prob. 6PCh. 5.2 - Prob. 7PCh. 5.2 - Prob. 8PCh. 5.2 - Prob. 9PCh. 5.2 - Prob. 10PCh. 5.2 - Prob. 11PCh. 5.2 - Prob. 12PCh. 5.2 - Prob. 13PCh. 5.2 - Prob. 14PCh. 5.2 - Prob. 15PCh. 5.2 - Prob. 16PCh. 5.2 - Prob. 17PCh. 5.2 - Prob. 18PCh. 5.2 - Prob. 19PCh. 5.2 - Prob. 20PCh. 5.2 - Prob. 21PCh. 5.2 - Prob. 22PCh. 5.2 - Prob. 23PCh. 5.2 - Prob. 24PCh. 5.2 - Prob. 25PCh. 5.2 - Prob. 26PCh. 5.2 - Prob. 27PCh. 5.2 - Prob. 28PCh. 5.2 - Prob. 29PCh. 5.2 - Prob. 30PCh. 5.2 - Prob. 31PCh. 5.2 - Prob. 32PCh. 5.2 - Prob. 33PCh. 5.2 - Prob. 34PCh. 5.2 - Prob. 35PCh. 5.2 - Prob. 36PCh. 5.2 - Prob. 37PCh. 5.2 - Prob. 38PCh. 5.2 - Prob. 39PCh. 5.2 - Prob. 40PCh. 5.2 - Prob. 41PCh. 5.2 - Prob. 42PCh. 5.2 - Prob. 43PCh. 5.2 - Prob. 44PCh. 5.2 - Prob. 45PCh. 5.2 - Prob. 46PCh. 5.2 - Prob. 47PCh. 5.2 - Prob. 48PCh. 5.2 - Prob. 49PCh. 5.2 - Prob. 50PCh. 5.3 - Prob. 1PCh. 5.3 - Prob. 2PCh. 5.3 - Prob. 3PCh. 5.3 - Prob. 4PCh. 5.3 - Prob. 5PCh. 5.3 - Prob. 6PCh. 5.3 - Prob. 7PCh. 5.3 - Prob. 8PCh. 5.3 - Prob. 9PCh. 5.3 - Prob. 10PCh. 5.3 - Prob. 11PCh. 5.3 - Prob. 12PCh. 5.3 - Prob. 13PCh. 5.3 - Prob. 14PCh. 5.3 - Prob. 15PCh. 5.3 - Prob. 16PCh. 5.3 - Prob. 17PCh. 5.3 - Prob. 18PCh. 5.3 - Prob. 19PCh. 5.3 - Prob. 20PCh. 5.3 - Prob. 21PCh. 5.3 - Prob. 22PCh. 5.3 - Prob. 23PCh. 5.3 - Prob. 24PCh. 5.3 - Prob. 25PCh. 5.3 - Prob. 26PCh. 5.3 - Prob. 27PCh. 5.3 - Prob. 28PCh. 5.3 - Prob. 29PCh. 5.3 - Prob. 30PCh. 5.3 - Prob. 31PCh. 5.3 - Prob. 32PCh. 5.3 - Prob. 33PCh. 5.3 - Verify Eq. (53) by substituting the expressions...Ch. 5.3 - Prob. 35PCh. 5.3 - Prob. 36PCh. 5.3 - Prob. 37PCh. 5.3 - Prob. 38PCh. 5.3 - Prob. 39PCh. 5.3 - Prob. 40PCh. 5.4 - Prob. 1PCh. 5.4 - Prob. 2PCh. 5.4 - Prob. 3PCh. 5.4 - Prob. 4PCh. 5.4 - Prob. 5PCh. 5.4 - Prob. 6PCh. 5.4 - Prob. 7PCh. 5.4 - Prob. 8PCh. 5.4 - Prob. 9PCh. 5.4 - Prob. 10PCh. 5.4 - Prob. 11PCh. 5.4 - Prob. 12PCh. 5.4 - Prob. 13PCh. 5.4 - Prob. 14PCh. 5.4 - Prob. 15PCh. 5.4 - Prob. 16PCh. 5.4 - Prob. 17PCh. 5.4 - Prob. 18PCh. 5.4 - Prob. 19PCh. 5.4 - Prob. 20PCh. 5.4 - Prob. 21PCh. 5.4 - Prob. 22PCh. 5.4 - Prob. 23PCh. 5.4 - Prob. 24PCh. 5.4 - Prob. 25PCh. 5.4 - Prob. 26PCh. 5.4 - Prob. 27PCh. 5.4 - Prob. 28PCh. 5.4 - Prob. 29PCh. 5.5 - Prob. 1PCh. 5.5 - Prob. 2PCh. 5.5 - Prob. 3PCh. 5.5 - Prob. 4PCh. 5.5 - Prob. 5PCh. 5.5 - Prob. 6PCh. 5.5 - Prob. 7PCh. 5.5 - Prob. 8PCh. 5.5 - Prob. 9PCh. 5.5 - Prob. 10PCh. 5.5 - Prob. 11PCh. 5.5 - Prob. 12PCh. 5.5 - Prob. 13PCh. 5.5 - Prob. 14PCh. 5.5 - Prob. 15PCh. 5.5 - Prob. 16PCh. 5.5 - Prob. 17PCh. 5.5 - Prob. 18PCh. 5.5 - Prob. 19PCh. 5.5 - Prob. 20PCh. 5.5 - Prob. 21PCh. 5.5 - Prob. 22PCh. 5.5 - Prob. 23PCh. 5.5 - Prob. 24PCh. 5.5 - Prob. 25PCh. 5.5 - Prob. 26PCh. 5.5 - Prob. 27PCh. 5.5 - Prob. 28PCh. 5.5 - Prob. 29PCh. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Prob. 32PCh. 5.5 - Prob. 33PCh. 5.5 - Prob. 34PCh. 5.5 - Prob. 35PCh. 5.5 - Prob. 36PCh. 5.6 - Prob. 1PCh. 5.6 - Prob. 2PCh. 5.6 - Prob. 3PCh. 5.6 - Prob. 4PCh. 5.6 - Prob. 5PCh. 5.6 - Prob. 6PCh. 5.6 - Prob. 7PCh. 5.6 - Prob. 8PCh. 5.6 - Prob. 9PCh. 5.6 - Prob. 10PCh. 5.6 - Prob. 11PCh. 5.6 - Prob. 12PCh. 5.6 - Prob. 13PCh. 5.6 - Prob. 14PCh. 5.6 - Prob. 15PCh. 5.6 - Prob. 16PCh. 5.6 - Prob. 17PCh. 5.6 - Prob. 18PCh. 5.6 - Prob. 19PCh. 5.6 - Prob. 20PCh. 5.6 - Prob. 21PCh. 5.6 - Prob. 22PCh. 5.6 - Prob. 23PCh. 5.6 - Prob. 24PCh. 5.6 - Prob. 25PCh. 5.6 - Prob. 26PCh. 5.6 - Prob. 27PCh. 5.6 - Prob. 28PCh. 5.6 - Prob. 29PCh. 5.6 - Prob. 30PCh. 5.6 - Prob. 31PCh. 5.6 - Prob. 32PCh. 5.6 - Prob. 33PCh. 5.6 - Prob. 34PCh. 5.6 - Prob. 35PCh. 5.6 - Prob. 36PCh. 5.6 - Prob. 37PCh. 5.6 - Prob. 38PCh. 5.6 - Prob. 39PCh. 5.6 - Prob. 40PCh. 5.7 - Prob. 1PCh. 5.7 - Prob. 2PCh. 5.7 - Prob. 3PCh. 5.7 - Prob. 4PCh. 5.7 - Prob. 5PCh. 5.7 - Prob. 6PCh. 5.7 - Prob. 7PCh. 5.7 - Prob. 8PCh. 5.7 - Prob. 9PCh. 5.7 - Prob. 10PCh. 5.7 - Prob. 11PCh. 5.7 - Prob. 12PCh. 5.7 - Prob. 13PCh. 5.7 - Prob. 14PCh. 5.7 - Prob. 15PCh. 5.7 - Prob. 16PCh. 5.7 - Prob. 17PCh. 5.7 - Prob. 18PCh. 5.7 - Prob. 19PCh. 5.7 - Prob. 20PCh. 5.7 - Prob. 21PCh. 5.7 - Prob. 22PCh. 5.7 - Prob. 23PCh. 5.7 - Prob. 24PCh. 5.7 - Prob. 25PCh. 5.7 - Prob. 26PCh. 5.7 - Prob. 27PCh. 5.7 - Prob. 28PCh. 5.7 - Prob. 29PCh. 5.7 - Prob. 30PCh. 5.7 - Prob. 31PCh. 5.7 - Prob. 32PCh. 5.7 - Prob. 33PCh. 5.7 - Prob. 34P
Knowledge Booster
Similar questions
- Solve the following system of linear equation by (a) Gaussian elimination (b) Gauss Jordan and (c) Inverse matrix. Show complete solution. (Manual Computation)arrow_forwardComputer Science matlabarrow_forwardGiven the following data: x 0 0.25 0.5 1 y 1 1.4 1.6 2 Consider the problem of constructing a natural cubic spline S(x). Form the matrix A and vector of y values which are used to solve the vector containing all coefficients.arrow_forward
- can you correct it thank youarrow_forwardSolve botharrow_forwardFind the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix. (a) the characteristic equation - 1 = 0 (b) the eigenvalues (Enter your answers from smallest to largest.) 1 (22, 22) =| 2 2 a basis for each of the corresponding eigenspaces X, = X, = 1arrow_forward
- Q2/ The pipe in Fig. is driven by pressurized air in the tank. What is the friction factor (f) when the water flow rate through pipe is ( 85 m/hr ) and the pressure at point 1 is (2500 kPa). (25Marks) 30m smooth pipe d = 70mm open jet P1 1 90m 15m 60marrow_forward2. The Lorenz equations originating from models of atmospheric physics are given as follows: dr = 10 (y - 2) dt (2a) %3D dy 28r – y -rz (2b) dt dz ay - 2.6666672 (2c) dt with initial conditions r(0) = y(0) = 2(0) = 5. (a) Evaluate the eigenvalues of the Jacobian matrix at t = 0. Is the problem stiff? Estimate the maximum time step that can be selected to keep the solution stable when the fourth-order Runge-Kutta method is used. (b) Solve the given system to t = 50 using the fourth-order Runge-Kutta method. Set the time step to 0.1. Plot the solution. All three functions (2(t), y(t), z(t)) should be present on one plot. • Set the time step to 10 3 and 10 6. Plot r(t) obtained at the three time steps (the first one is 0.1 from above) on one plot. Describe the behaviour. How does the value of the time step affect the result? Set the time step to 10-6 and use the initial conditions r(0) = y(0) = 5.0 and 2(0) = 5.00001. Plot z(t) obtained at the two different sets of initial conditions on…arrow_forward(Cayley-IHamilton Theorem) The Cayley-Ilamilton theorem is a powerful theorem in Linear algebra that states: every square matrix of real numbers satisfies its own char- acteristic equation. For 2 x 2 matrices this can be seen in the following way. First, we introduce the trace of the matrix tr A 41,1 +22 and the determinant det A = a11a22 - 41,22,1- Then, the chacteristic polynomial is the quadratic given by p(A) = x – (tr A)A + (det. A). Then, for any 2 x 2 matrix, if you plug it into this polynomial, you should always get a zero matrix. c_h_test Function: Input parameters: • a single 2 x2 matrix for which you would like to test the Cayley Ilamilton Theorem Local Variables: • two scalars to represent the trace and determinant Output parameters: a single 2 x2 which is the result of evaluating the charcteristic polynomial at A (note: think carefully about the constant term) A possible sample case is: > mat_B = c_h_test([3, 2 ; 2, 0]) mat B = 0 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole