Chemistry: The Central Science (14th Edition)
14th Edition
ISBN: 9780134414232
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.5, Problem 5.7.2PE
Practice Exercise 2
A 0.5865-g sample of lactic acid (HC3H5O3) reacts with oxygen in a calorimeter whose heat capacity is 4.812kJ/°C. The temperature increases from 23.10 to 24.95 °C. Calculate the heat of combustion of lactic acid
- per gram and
- per mole.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
hello, this is about physical chemistry . can you help me please?
PROBLEM 5+
What is the major product of each of the following reactions?
a. CH3CH2CHCH3 + HBr
d.
+ HBr
A
OH
OH
CH3
CH3
e.
b.
-OH + HCI
+ HCl
A,
OH
CH3
OH
CH3
c. CH3C CHCH3 + HBr
CH3 OH
f.
CHCH3 + HCl ^>
One suggestion for solving the fuel shortage due to decreasing volumes of fossil fuels
are hydrogen / oxygen fuel cells.
a. State the two half-cell reaction equations for such fuel cells. Calculate the cell
potential as well as the electrical work gained by this fuel cell at standard conditions
with E002/H20 = 1.229 V.
b. Compare the fuel cell to the Gibbs free energy of the combustion reaction of
n-octane at standard conditions. Use ASºm, n-Oct., 1 = 361.2 J/mol K.
Chapter 5 Solutions
Chemistry: The Central Science (14th Edition)
Ch. 5.2 - A mixture of gases A2 and B2 are introduced to a...Ch. 5.2 - Practice Exercise 2 Calculate the change in the...Ch. 5.3 - A solid sample of Zn(OH)2 is added to 0.350 L of...Ch. 5.3 -
Practice Exercise 2
Calculate the work, in J, if...Ch. 5.3 - Practice Exercise 1 A chemical reaction that gives...Ch. 5.3 - Prob. 5.3.2PECh. 5.4 - Prob. 5.4.1PECh. 5.4 - Prob. 5.4.2PECh. 5.5 - The coinage metals (Group 1B) copper, silver, and...Ch. 5.5 - Prob. 5.5.2PE
Ch. 5.5 - Practice Exercise 1 When 0.243 g of Mg metal is...Ch. 5.5 - Practical exercise 2 When 50.0 mL of 0.100MAgNO3...Ch. 5.5 - Prob. 5.7.1PECh. 5.5 - Practice Exercise 2 A 0.5865-g sample of lactic...Ch. 5.6 - Prob. 5.8.1PECh. 5.6 - Prob. 5.8.2PECh. 5.6 - Calculate H for the reaction C(s)+...Ch. 5.6 - Prob. 5.9.2PECh. 5.7 - Prob. 5.10.1PECh. 5.7 - Prob. 5.10.2PECh. 5.7 - Prob. 5.11.1PECh. 5.7 - Prob. 5.11.2PECh. 5.7 -
Practice Exercise 1
Given 2SO2(g) + 02(g) —>...Ch. 5.7 - Prob. 5.12.2PECh. 5.8 - Use the average bond enthalpies in Table 5.41to...Ch. 5.8 -
Use the average bond enthalpies in Table 5.4 to...Ch. 5.9 - Prob. 5.14.1PECh. 5.9 - Prob. 5.14.2PECh. 5 - One of the important ideas of thermodynamics is...Ch. 5 - Two positively charged spheres, each with a charge...Ch. 5 - SI The accompanying photo shows a pipevine...Ch. 5 - Consider the accompanying energy diagram. Does...Ch. 5 - The contents of the closed box in each of the...Ch. 5 - Imagine that you are climbing a mountain. Is the...Ch. 5 - The diagram shows four states of a system, each...Ch. 5 - You may have noticed that when you compress the...Ch. 5 - Imagine a container placed in a tub of water, as...Ch. 5 - In the accompanying cylinder diagram, a chemical...Ch. 5 - Prob. 10ECh. 5 - Consider the two diagrams that follow. Based on...Ch. 5 - Consider the conversion of compound A into...Ch. 5 - What is the electrostatic potential energy (in...Ch. 5 - What is the electrostatic potential energy (in...Ch. 5 - The electrostatic force (not energy) of attraction...Ch. 5 - Use the equations given in Problem 5.15 to...Ch. 5 - A sodium ion, Na+, with a charge of 1.6 x 10-19 C...Ch. 5 - A magnesium ion, Mg2+, with a charge of 3.2 x...Ch. 5 - Identify the force present and explain whether...Ch. 5 - Identify the force present and explain whether...Ch. 5 - Which of the following cannot leave or enter a...Ch. 5 - Prob. 22ECh. 5 - According to the first law of thermodynamics, what...Ch. 5 - Write an equation that expresses the first law of...Ch. 5 - Calculate AB and determine whether the process is...Ch. 5 - For the following processes, calculate the change...Ch. 5 - A gas is confined to a cylinder fitted with a...Ch. 5 - Consider a system consisting of two oppositely...Ch. 5 - What is meant by the term state function? Give an...Ch. 5 - Indicate which of the following is independent of...Ch. 5 - During a normal breath, our lungs expand about...Ch. 5 - How much work (in J) is involved in a chemical...Ch. 5 - Why is the change in enthalpy usually easier to...Ch. 5 - Under what condition will the enthalpy change of a...Ch. 5 - Assume that the following reaction occurs at...Ch. 5 - Suppose that the gas-phase reaction 2NO(g) + 02(g)...Ch. 5 - A gas is confined to a cylinder under constant...Ch. 5 - A gas is confined to a cylinder under constant...Ch. 5 - The complete combustion of ethanol, C2H5OH(l), to...Ch. 5 - The decomposition of Ca(OH)2(s) into CaO(s) and...Ch. 5 - Ozone, 03(9), is a form of elemental oxygen that...Ch. 5 -
5.42 Without referring to tables, predict which...Ch. 5 - Consider the following reaction: 2 Mg(s) + 02(g)2...Ch. 5 -
544 Consider the following reaction:
2...Ch. 5 - When solutions containing silver ions and chloride...Ch. 5 - At one time, a common means of forming small...Ch. 5 -
5.47 Consider the combustion of liquid methanol,...Ch. 5 -
5.48 Consider the decomposition of liquid...Ch. 5 - 5.49
a What are the units of molar heat...Ch. 5 - Two solid objects, A and B, are placed in boiling...Ch. 5 - What is the specific heat of liquid water? What is...Ch. 5 -
5.52
a. Which substance in Table 5.2 requires...Ch. 5 - The specific heat of octane, C8H18(l), is 2.22...Ch. 5 -
6.54 Consider the data about gold metal in...Ch. 5 - When a 6-50-g sample of solid sodium hydroxide...Ch. 5 -
5.56
a. When a 4 25-g sample of solid ammonium...Ch. 5 - A 2.200-g sample of quinone (C5H402) is burned in...Ch. 5 -
8.68 A 1.800-g sample of phenol (C6H5OH) was...Ch. 5 - Under constant-volume conditions, the heat of...Ch. 5 -
5.60 Under constant-volume conditions, the heat...Ch. 5 -
5.61 Can you use an approach similar to Hess's...Ch. 5 -
5.62 Consider the following hypothetical...Ch. 5 - Calculate the enthalpy change for the reaction...Ch. 5 - From the enthalpies of reaction calculate H for...Ch. 5 - From the enthalpies of reaction Calculate H for...Ch. 5 - Given the data use Hess's law to calculate H for...Ch. 5 -
5.67
What is meant by the term standard...Ch. 5 - S
5.68
What is the value of the standard enthalpy...Ch. 5 - For each of the following compounds, write a...Ch. 5 - Write balanced equations that describe the...Ch. 5 - The following is known as the thermite reaction:...Ch. 5 -
5.72 Many portable gas heaters and grills use...Ch. 5 - Using values from Appendix C , calculate the...Ch. 5 -
5.74 Using values from Appendix C, calculate the...Ch. 5 - Complete combustion of 1 mol of acetone (C2H6O)...Ch. 5 - Calcium carbide (CaC2) reacts with water to form...Ch. 5 -
5.77 Gasoline is composed primarily of...Ch. 5 - Prob. 78ECh. 5 - Ethanol (C2H5OH) is blended with gasoline as an...Ch. 5 -
5.80 Methanol (CH3OH) is used as a fuel in race...Ch. 5 -
5.81 Without doing any calculations, predict the...Ch. 5 -
5.82 Without doing any calculations, predict...Ch. 5 - Use bond enthalpies in Table 5.4 Q to estimate for...Ch. 5 - Use bond enthalpies in Table 5.40 to estimate for...Ch. 5 - Use enthalpies of formation given in Appendix C to...Ch. 5 -
5.86
The nitrogen atoms in an N2 molecule are...Ch. 5 -
5.87 Consider the reaction 2H(g) + O2(g) ...Ch. 5 -
5.88 Consider the reaction H2(g) + I2(s) ...Ch. 5 -
5.89
What is meant by the term fuel value?
Which...Ch. 5 -
5.90
Which releases the most energy when...Ch. 5 -
5.91
A serving of a particular ready-to-serve...Ch. 5 -
5.92 A pound of plain M&M® candies contains 96 g...Ch. 5 -
5.93 The heat of combustion of fructose,...Ch. 5 -
5.94 The heat of combustion of ethanol,...Ch. 5 -
5.95 The standard enthalpies of formation of...Ch. 5 -
5.98 It is interesting to compare the ‘fuel...Ch. 5 - At the end of 2012, global population was about...Ch. 5 -
5.98 The automobile fuel called E85 consists of...Ch. 5 - The air bags that provide protection in...Ch. 5 -
5.100 An aluminum can of a soft drink is placed...Ch. 5 -
5.101 Consider a system consisting of the...Ch. 5 - A sample of gas is contained in a...Ch. 5 - Limestone stalactites and stalagmites are formed...Ch. 5 - Consider the systems shown in Figure 5.10. In one...Ch. 5 -
5.105 A house is designed to have passive solar...Ch. 5 -
5.108 A coffee-cup calorimeter of the type shown...Ch. 5 -
5.107
When a 0.235-9 sample of benzoic acid is...Ch. 5 -
5.108 Meals-ready-to-eat (MREs) are military...Ch. 5 - 5.109 Burning methane in oxygen can produce three...Ch. 5 - Prob. 110AECh. 5 -
5.111 From the following data for three...Ch. 5 - The hydrocarbons acetylene (C2H2) and benzene...Ch. 5 - Ammonia (NH3) boils at -33 °C; at this temperature...Ch. 5 -
5.114 Three common hydrocarbons that contain four...Ch. 5 -
5.115 A 201-lb man decides to add to his exercise...Ch. 5 -
5.116 TheSun supplies about 1.0 kilowatt of...Ch. 5 -
5.117 Itis estimated that the net amount of...Ch. 5 -
5.118 At 20 °C (approximately room temperature)...Ch. 5 - Suppose an Olympic diver who weighs 52.0 kg...Ch. 5 -
5.120 Consider the combustion of a single...Ch. 5 -
5.121 Consider the following unbalanced...Ch. 5 - Consider the following acid-neutralization...Ch. 5 -
5.123 Consider two solutions, the first being...Ch. 5 - The precipitation reaction between AgNO3(aq) and...Ch. 5 -
5.125 A sample of a hydrocarbon is combusted...Ch. 5 -
5.126 The methane molecule, CH4, has the geometry...Ch. 5 -
5.127 One of the best-selling light, or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- a. Determine the electrochemical potential of the following cell using E°Mg2+/Mg = -2.362 V. Mg | Mg2+ (a=104) || H* (a = 4) | H2 (p = 0.5 bar) | Pt b. A galvanic chain consists of Co²+ / Co and Ag+ / Ag half-cells with EºCo²+/Co = -0.282 V and Eº Ag+/Ag = 0.799 V. Determine which half-cell will be reduced and which one will be oxidised. Furthermore, calculate the electrochemical potential as well as the equilibrium constant of the whole cell at i. [Co²+] = 0.1 M and [Ag+] = 0.5 M ii. [Co²+] = 0.001 M and [Ag*] = 1.5 Marrow_forwardThe equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C. Pt | H2, g❘ HClaq || AgClaq | Ags State the redox reactions present in this cell. Calculate the pH value of the electrolyte solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and Clare equal.arrow_forwardHere are the energies (in kcal/mol) for staggered and eclipsed interactions for CH, CC, and CBr bonds eclipsed (0°) staggered (60°) bonds CH/CH 1.0 0.0 CH/CC 1.3 0.0 Br: CC/CC 3.0 0.9 Br CH/CBr 1.8 0.0 CC / CBr 3.3 1.0 CBr / CBr 3.7 1.2 a) I've drawn the Newman projection for one of the staggered conformations of the molecule above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered and the three eclipsed conformations (in order). CH₂ H3C. H' H Br b) Calculate the relative energies for each of the conformations and write them below each conformation.arrow_forward
- 90. Draw the stereoisomers obtained from each of the following reactions: a. H₂ b. H₂ C. H₂ Pd/C Pd/C Pd/Carrow_forward36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the first excited state from higher energy states. Line A has a wavelength of 434 nm. BA Increasing wavelength, λ (a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.arrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? H₂C H₂C CH2 1.60Å ハ C. * CH₂ H₂C * C H₂ 120°arrow_forward
- Question Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributorarrow_forwardCan you show me or determine the longest carbon chain, which is octane? Potentially highlight it in different sections to show me, plz, or individually?arrow_forwardPLEASE ANSWER ALL PARTS!!arrow_forward
- d) Determine the formal charge on the nitrogen atom in each of the structures. NH3 NH2 N C бобкат : N N H H Н H2N-OH A B C D E F Garrow_forwardLewis Structure, Hybridization & Molecular Geometry a) Draw the Lewis Structure of the molecules; Label the hybridization of each carbon atom; Predict the approximate molecular geometry around each carbon atom. CH3CHO CH3CN b) Draw the Lewis Structure of Nitromethane; Predict the approximate molecular geometry around the nitrogen atom. CH3NO2 c) Draw the Lewis Structure; Label the hybridization of the boron atom; Predict the approximate molecular geometry. BF3 BF4arrow_forwarda. The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 " is best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: HO + :Ö: Bicarbonate is crucial for the control of body pH (for example, blood pH 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY