Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm2. Determine (a) the inlet velocity and (b) the exit temperature.
(a)
The inlet velocity.
Answer to Problem 32P
The inlet velocity is
Explanation of Solution
The carbon dioxide flows through the nozzle at steady state. Hence, the inlet and exit mass flow rates are equal.
Write the formula for specific volume
Here, the gas constant of carbon dioxide is
Write the formula for mass flow rate.
Here, the cross-sectional area is
Rearrange the Equation (II) to obtain the inlet velocity
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The gas constant of carbon dioxide is,
Conclusion:
Substitute
Equation (I).
Substitute
Thus, the inlet velocity is
(b)
The exit temperature.
Answer to Problem 32P
The exit temperature is
Explanation of Solution
Write the energy rate balance equation.
Here, the rate of energy transfer in by heat, work and mass is
Here, the nozzle operates at steady state. Hence, the rate of change in internal, kinetic, potential, etc. energies becomes zero.
The rate of energy transfer in
The rate of energy transfer out
Here, the rate of heat transfer is
Here, the nozzle has one inlet and one outlet. Say inlet condition as 1 and outlet condition as 2 as follows.
Since, the nozzle is adiabatic nozzle, the heat transfer rate and work transfer rates are negligible i.e.
The Equations (V) and (VI) are reduced to as follows.
Substitute
Equation (IV).
Refer Table A-20, “Ideal-gas properties of carbon dioxide,
The enthalpy in molar basis is as follows,
Here, the molar mass of carbon dioxide is
Substitute
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The molar mass of carbon dioxide is,
Refer Table A-20, “Ideal-gas properties of carbon dioxide,
The inlet enthalpy
Write the formula of interpolation method of two variables.
Show the temperature and enthalpy values from the Table A-20 as in below table.
S.No. | x | y |
Temperature | Enthalpy | |
1 | 770 | 30644 |
2 | 773 | ? |
3 | 780 | 31154 |
Substitute
Thus, the enthalpy
Conclusion:
Substitute
Refer Table A-20, “Ideal-gas properties of carbon dioxide,
The temperature corresponding to exit enthalpy of
Show the enthalpy and temperature values from the Table A-20 as in below table.
S.No. | x | y |
Enthalpy | Temperature | |
1 | 26138 | 680 |
2 | 26422.4436 | ? |
3 | 26631 | 690 |
Substitute
Thus, the temperature corresponding to exit enthalpy of
Thus, the exit temperature is
Want to see more full solutions like this?
Chapter 5 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- The primary material used in the production of glass products is silica sand. True or Falsearrow_forwardWhich one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forward
- Two forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forwardNo chatgpt pls will upvotearrow_forward101 the three shafts if the diameter ratio is 2 (D/d = 2)? Ans. na, tension = 1.21, na, bending = 1.19, na, torsion = 1.17. 6.32 A material with a yield strength of S₁ = 350 MPa is subjected to the stress state shown in Sketch c. What is the factor of safety based on the maximum shear stress and distortion energy theories? Ans. For MSST, n, = 11.67. 50 MPa 85 MPa 20 MPa 70 MPa Sketch c, for Problems 6.32 and 6.33arrow_forward
- Can you draw the left view of the first orthographic projectionarrow_forwardImportant: I've posted this question twice and received incorrect answers. I've clearly stated that I don't require AI-generated working out. I need a genuine, expert-written solution with proper working. If you can't provide that, refer this question to someone who can please!. Note: Please provide a clear, step-by-step handwritten solution (no AI involvement). I require an expert-level answer and will assess it based on quality and accuracy with that I'll give it a thumbs up or down!. Hence, refer to the provided image for clarity. Double-check everything for correctness before submitting. Thank you!arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY