THERMODYNAMICS LLF W/ CONNECT ACCESS
THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.5, Problem 176RP
To determine

The final temperature and mass of the air in the ballast tank.

Expert Solution & Answer
Check Mark

Answer to Problem 176RP

The final temperature and mass of the air in the ballast tank is 386.8K and 9460kg respectively.

Explanation of Solution

Write the general mass balance equation.

m˙inm˙out=ddt(msystem)m˙inm˙out=dmsystemdt (I)

Here, the inlet mass flow rate is m˙in, the exit mass flow rate is m˙out, and the change in mass of the system is dmsystemdt.

It is given that the mass of air pumped into the tank to get the submarine to the surface. Here, there is no exit mass of air. Thus, the exit mass (m˙out) of air is negligible.

m˙out=0

Refer Equation (I).

Write the mass balance equation for air.

m˙a,inm˙a,out=dmadtm˙a,in0=dmadtm˙a,in=dmadt (II)

Here, the subscript a indicate the air.

While air entering into the ballast tank, the seawater present in the tank is released to the sea. Here, there is no inlet mass of water. Thus, the inlet mass (m˙in) of water is negligible.

m˙in=0

Refer Equation (I).

Write the mass balance equation for water.

m˙w,inm˙w,out=dmwdt0m˙w,out=dmwdtm˙w,out=dmwdt (III)

Here, the subscript w indicates the seawater.

Write the general energy rate balance equation.

E˙inE˙out=ΔE˙system (IV)

Here, the rate of total energy in is E˙in, the rate of total energy out is E˙out, and the rate of change in net energy of the system is ΔE˙system.

The system is at steady state. Hence, the rate of change in net energy of the system becomes zero.

ΔE˙system=0

Refer Equation (IV).

Write the energy balance equation for the system (ballast tank).

d(mu)adt+d(mu)wdt+hw,outm˙w,outha,inm˙a,in=0 (V)

Here, the mass is m, the internal energy is u, the enthalpy is h, and the subscript a indicates air, w indicates water.

Substitute dmadt for m˙a,in and dmwdt for m˙w,out in Equation (V).

d(mu)adt+d(mu)wdt+hw,out(dmwdt)ha,in(dmadt)=0d(mu)adt+d(mu)wdthw,outdmwdtha,indmadt=0d(mu)adt+d(mu)wdt=hw,outdmwdt+ha,indmadtd(mu)a+d(mu)w=hw,outdmw+ha,indma (VI)

Integrate the Equation (VI) at initial (1) and final (2) states.

12d(mu)a+12d(mu)w=12hw,outdmw+12ha,indma{[(mu)2(mu)1]a+[(mu)2(mu)1]w}=hw,out(m2m1)w+ha,in(m2m1)a (VII)

The enthalpy and internal energy is expressed as follows.

h=cpTu=cvT

The mass of air is expressed as follows.

ma=PνRT

Here, the specific volume is v.

For water the specific heat is cp=cv=cw.

At final state, the mass sea water is zero and the ballast is completely filled with air.

(m2)w=0

Rewrite the Equation (VII) as follows.

[P2ν2RT2cvT2P1ν1RT1cvT1]a+[0m1cwT1]w=cwT1,w(0m1)w+cp,aTin,a(P2ν2RT2P1ν1RT1)a[P2ν2RT2cvT2P1ν1RT1cvT1]am1,wcwT1,w=m1,wcwT1,w+cp,aTin,a(P2ν2RT2P1ν1RT1)a[P2ν2RT2cvT2P1ν1RT1cvT1]a=cp,aTin,a(P2ν2RT2P1ν1RT1)acv,a(P2ν2RP1ν1R)a=cp,aTin,a(P2ν2RT2P1ν1RT1)a

cv,acp,a(P2ν2RP1ν1R)a=Tin,a(P2ν2RT2P1ν1RT1)a (VIII)

Here,

The specific heat ratio is, k=cpcv.

The initial and final pressure of air is, P2=P1.

Rewrite the Equation (VIII) as follows.

1ka(ν2ν1)a=Tin,a(ν2T2ν1T1)a1kaTin,a(ν2ν1)a+(ν1T1)a=(ν2T2)aT2,a=ν2,a1kaTin,a(ν2ν1)a+(ν1T1)a (IX)

Write the formula for mass flow rate of air at final state.

m˙2,a=(P2ν2RT2)a (X)

Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.

The gas constant (R) of air is 0.287kPa.m3/kgK.

Refer Table A-2a, “Ideal-gas specific heats of various common gases”.

The specific heat ratio (ka) of air at room temperature is 1.4.

Conclusion:

Substitute 700m3 for v2,a, 1.4 for ka, (20+273)K for Tin,a, 100m3 for ν1, and (15+273)K for T1 in Equation (IX).

T2,a=700m311.4[(20+273)K](700m3100m3)+100m3(15+273)K=700m31.4627m3/K+0.3472m3/K=386.7828K386.8K

Substitute 1500kPa for P2, 700m3 for v2, 0.287kPa.m3/kgK for R, and 386.8K for T2 in Equation (X).

m˙2,a=1500kPa(700m3)0.287kPa.m3/kgK×(386.8K)=1050000kPam3111.0116kPa.m3/kg=9458.47kg9460kg

Thus, the final temperature and mass of the air in the ballast tank is 386.8K and 9460kg respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 2-m³ insulated tank initially containing saturated water vapor at 1 MPa is connected through a valve to a supply line that carries steam at 400 kPa. Now the valve is opened, and steam is allowed to flow slowly into the tank until the pressure in the tank rises to 2 MPa. At this instant the tank temperature is measured to be 450°C. (a) Determine the mass of the steam that has entered and the temperature of the steam in the supply line, and (b) If the tank was initially evacuated while everything else was kept the same, what would be the temperature of the steam in the supply line?
A piston cylinder contains 1.25 kg water at 25°C with a constant load on the piston such that the pressure is 300 kPa. A nozzle in a line to the cylinder is opened to enable flow to the outside atmosphere at 100 kPa and 25°C. The process continues until 85% of the initial mass has flowed out. At this point, the temperature of water increased by 10°C. Assume that the process is done in an Water isobaric manner. Write the mass and energy balance equations and calculate the work (kJ) and heat (kJ) involved in the process if the exit velocity is 40 m/s. For compressed liquid, assume the substance is a saturated liquid at the given temperature.
ces Neon is compressed from 100 kPa and 23°C to 500 kPa in an isothermal compressor. Determine the change in the specific volume and specific enthalpy of neon caused by this compression. The gas constant of neon is R = 0.4119 kJ/kg-K, and the constant-pressure specific heat of neon is 1.0299 kJ/kg-K. The change in the specific volume is The change in the specific enthalpy is m³/kg. kJ/kg.

Chapter 5 Solutions

THERMODYNAMICS LLF W/ CONNECT ACCESS

Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - Air enters a nozzle steadily at 2.21 kg/m3 and 40...Ch. 5.5 - A spherical hot-air balloon is initially filled...Ch. 5.5 - Water enters the constant 130-mm inside-diameter...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - A hair dryer is basically a duct of constant...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - What are the different mechanisms for transferring...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - An air compressor compresses 6 L of air at 120 kPa...Ch. 5.5 - A house is maintained at 1 atm and 24C, and warm...Ch. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - How is a steady-flow system characterized?Ch. 5.5 - Can a steady-flow system involve boundary work?Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Steam enters a nozzle at 400C and 800 kPa with a...Ch. 5.5 - Air at 80 kPa and 127C enters an adiabatic...Ch. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - Air enters an adiabatic nozzle steadily at 300...Ch. 5.5 - Consider an adiabatic turbine operating steadily....Ch. 5.5 - Prob. 42PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - Air is expanded from 1000 kPa and 600C at the...Ch. 5.5 - Prob. 45PCh. 5.5 - Refrigerant-134a enters a compressor at 100 kPa...Ch. 5.5 - Refrigerant-134a enters a compressor at 180 kPa as...Ch. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 5.5 - An adiabatic air compressor compresses 10 L/s of...Ch. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Steam flows steadily into a turbine with a mass...Ch. 5.5 - Air is compressed by an adiabatic compressor from...Ch. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - A portion of the steam passing through a steam...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Someone claims, based on temperature measurements,...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Prob. 69PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 71PCh. 5.5 - Refrigerant-134a at 700 kPa, 70C, and 8 kg/min is...Ch. 5.5 - Hot and cold streams of a fluid are mixed in a...Ch. 5.5 - A hot-water stream at 80C enters a mixing chamber...Ch. 5.5 - Water at 80F and 20 psia is heated in a chamber by...Ch. 5.5 - An adiabatic open feedwater heater in an electric...Ch. 5.5 - Cold water (cp = 4.18 kJ/kgC) leading to a shower...Ch. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - An open feedwater heater heats the feedwater by...Ch. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - A well-insulated shell-and-tube heat exchanger is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two streams of water are mixed in an insulated...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The ducts of an air heating system pass through an...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Saturated liquid water is heated in a steady-flow...Ch. 5.5 - Water enters the tubes of a cold plate at 70F with...Ch. 5.5 - Prob. 96PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - A desktop computer is to be cooled by a fan. The...Ch. 5.5 - Prob. 99PCh. 5.5 - A 4-m 5-m 6-m room is to be heated by an...Ch. 5.5 - A house has an electric heating system that...Ch. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 103PCh. 5.5 - Prob. 104PCh. 5.5 - Argon steadily flows into a constant-pressure...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - An insulated rigid tank is initially evacuated. A...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 115PCh. 5.5 - A 2-m3 rigid tank initially contains air at 100...Ch. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 118PCh. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A 4-L pressure cooker has an operating pressure of...Ch. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - A 0.05-m3 rigid tank initially contains...Ch. 5.5 - A 0.12-m3 rigid tank contains saturated...Ch. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - Prob. 127PCh. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - A pistoncylinder device initially contains 0.6 kg...Ch. 5.5 - The weighted piston of the device shown in Fig....Ch. 5.5 - Prob. 136RPCh. 5.5 - Prob. 137RPCh. 5.5 - Prob. 138RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - Prob. 140RPCh. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Refrigerant-134a enters an adiabatic compressor at...Ch. 5.5 - Prob. 144RPCh. 5.5 - Prob. 145RPCh. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 149RPCh. 5.5 - Prob. 150RPCh. 5.5 - Prob. 151RPCh. 5.5 - Prob. 152RPCh. 5.5 - Prob. 153RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Determine the power input for a compressor that...Ch. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - In a dairy plant, milk at 4C is pasteurized...Ch. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - Prob. 164RPCh. 5.5 - Prob. 165RPCh. 5.5 - Prob. 166RPCh. 5.5 - The average atmospheric pressure in Spokane,...Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Prob. 169RPCh. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - Prob. 171RPCh. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - Prob. 176RPCh. 5.5 - Prob. 177RPCh. 5.5 - Steam enters a turbine steadily at 7 MPa and 600C...Ch. 5.5 - Reconsider Prob. 5178. Using appropriate software,...Ch. 5.5 - Prob. 180RPCh. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - A pistoncylinder device initially contains 2 kg of...Ch. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - A pressure cooker is a pot that cooks food much...Ch. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - Prob. 189RPCh. 5.5 - Consider an evacuated rigid bottle of volume V...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 195FEPCh. 5.5 - Prob. 196FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Refrigerant-134a at 1.4 MPa and 70C is throttled...Ch. 5.5 - Prob. 202FEPCh. 5.5 - Prob. 203FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...Ch. 5.5 - Saturated water vapor at 40C is to be condensed as...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license