EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.5, Problem 141RP
To determine
The velocity of the nitrogen at the pipe’s inlet and outlet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Saturated vapor enters the turbine at 8.0 MPa and exits 0.008 MPa. The turbine has an isentropic efficiency of 82.06% Velocity and elevation changes are insignificant. Determine the electrical power it can produce in kW if the mass of steam is 32.9 kg/s, and the mechanical and electrical efficiencies are 77.75% and 93.32%.
For the steam table, please use the green book entitled "Thermodynamics Properties of Water Including Vapor, Liquid, and Solid Phases" by Keenan, Keyes, Hill, and Moore.
Five hundred kilograms per hour of steam moves a
turbine. The steam enters the turbine at 44 atm and 450°C with a speed
linear 60 m/s, and exits at a point 5 m below the inlet, at pressure
atmospheric and at a speed of 360 m/s. The turbine provides work on the
shaft with a rating of 70 kW, and the heat loss in the turbine is estimated at
104 kcal/h. Calculate the variation in specific enthalpy associated with the
process.
Refrigerant -134a at 200 kPa and 40 C flows through a refrigeration line. Determine its specific volume
Chapter 5 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 5.5 - Prob. 1PCh. 5.5 - Define mass and volume flow rates. How are they...Ch. 5.5 - Does the amount of mass entering a control volume...Ch. 5.5 - Consider a device with one inlet and one outlet....Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - 5–6E Air whose density is 0.078 lbm/ft3 enters the...Ch. 5.5 - 5–7 Air enters a 28-cm diameter pipe steadily at...Ch. 5.5 - A steady-flow compressor is used to compress...Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - 5–10 A cyclone separator like that in Fig. P5–10...
Ch. 5.5 - 5–11 A spherical hot-air balloon is initially...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - 5–13 A pump increases the water pressure from 100...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - Prob. 15PCh. 5.5 - Prob. 16PCh. 5.5 - 5–17C What is flow energy? Do fluids at rest...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - Prob. 19PCh. 5.5 - Prob. 20PCh. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - Prob. 25PCh. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Prob. 35PCh. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Prob. 38PCh. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - 5–40C Consider an air compressor operating...Ch. 5.5 - Prob. 41PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - 5–43E Air flows steadily through an adiabatic...Ch. 5.5 - Prob. 44PCh. 5.5 - Prob. 45PCh. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Prob. 48PCh. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Prob. 50PCh. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Prob. 52PCh. 5.5 - 5–54 An adiabatic gas turbine expands air at 1300...Ch. 5.5 - Prob. 55PCh. 5.5 - Prob. 56PCh. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - Prob. 60PCh. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 70PCh. 5.5 - Prob. 71PCh. 5.5 - Prob. 72PCh. 5.5 - Prob. 73PCh. 5.5 - Prob. 74PCh. 5.5 - Prob. 76PCh. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Prob. 78PCh. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - Prob. 80PCh. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - Prob. 82PCh. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Prob. 89PCh. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Prob. 92PCh. 5.5 - 5–93 A scaled electronic box is to be cooled by...Ch. 5.5 - Prob. 94PCh. 5.5 - Prob. 95PCh. 5.5 - Prob. 96PCh. 5.5 - Prob. 97PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - Prob. 99PCh. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 101PCh. 5.5 - Prob. 102PCh. 5.5 - A house has an electric heating system that...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - Prob. 106PCh. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - Prob. 108PCh. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - 5–113 A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 114PCh. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 116PCh. 5.5 - Prob. 117PCh. 5.5 - Prob. 118PCh. 5.5 - Prob. 119PCh. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - Prob. 122PCh. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - Prob. 124PCh. 5.5 - Prob. 125PCh. 5.5 - Prob. 126PCh. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - Prob. 135RPCh. 5.5 - Prob. 136RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - 5–139 Saturated refrigerant-134a vapor at 34°C is...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Prob. 141RPCh. 5.5 - Prob. 142RPCh. 5.5 - Prob. 143RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Prob. 148RPCh. 5.5 - Prob. 149RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - Prob. 151RPCh. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Prob. 153RPCh. 5.5 - Prob. 154RPCh. 5.5 - Prob. 155RPCh. 5.5 - Prob. 156RPCh. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - Prob. 161RPCh. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - Prob. 171RPCh. 5.5 - Prob. 172RPCh. 5.5 - Prob. 173RPCh. 5.5 - Prob. 174RPCh. 5.5 - Prob. 175RPCh. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - Prob. 179RPCh. 5.5 - Prob. 181RPCh. 5.5 - Prob. 182RPCh. 5.5 - Prob. 184RPCh. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - Prob. 189RPCh. 5.5 - Prob. 190RPCh. 5.5 - Prob. 191RPCh. 5.5 - Prob. 192FEPCh. 5.5 - Prob. 193FEPCh. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 198FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Prob. 203FEPCh. 5.5 - Prob. 204FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The refrigerant R-134a enters the compressor of a refrigeration machine at a pressure of 140kPa and a temperature of -10°C, and exits at a pressure of 1MPa. The volumetric flow of the refrigerant entering the compressor is 0.23m3/minute. The refrigerant enters the throttling valve at a pressure of 0.95MP and at 30 °C, and exits the evaporator as saturated steam at -18 °C. The adiabatic efficiency of the compressor is 78%. Show the cycle in the T-s diagram. a) Power required to start the compressor b) Calculate the heat withdrawn from the cooled environment in unit time, COPSM=? c) Calculate how much the pressure of the refrigerant drops between the evaporator and the compressor and how much the heat gain is.arrow_forwardQ: Five hundred kilograms per hour of steam drives a turbine. The steam enters the turbine at 44 atm and 450°C at a linear velocity of 60 m/s and leaves at a point 5 m below the turbine inlet at atmospheric pressure and a velocity of 360 m/s. The turbine delivers shaft work at a rate of 70 kW, and the heat loss from the turbine is estimated to be 10ʻ kcal/h. Calculate the specific enthalpy change associated with the process.arrow_forwardSteam at a pressure of 2MPA and temperature 300°C is passed at a constant rate into a desuperheater unit. The desuperheater is accomplished by continuously spraying water at 95 °C onto incoming superheated steam. The amount of water injected is so regulated that both the water and superheated steam finally change into dry steam at 2 MPa. If the resulting mixture of dry saturated steam leaves the desuperheater at 2MPA and the rate of 1 kg/s, find the mass of superheated steam used per hour and the mass of water to be injected per hour. Fond also the diameter of the pipe through which the superheated steam flows to the superheater if the speed of the steam through the pipe is not to exceed (steam 3290.4kg/h; water 1. 25m/s. . 309.6kg/h; 76.5mm)arrow_forward
- The remaining wet steam exits the turbine at 11.5 kPa with a quality of 0.88. Determine the minimum pipe diameters required to restrict the maximum inlet velocity to 50 m/s, the maximum extraction velocities each to 75 m/s, and the turbine outlet velocity to 130 m/s. Consider a steam turbine in which steam enters at 10.45 MPa and 780 K with a flow rate of 38.739 kg/s. As shown in the sketch, a portion of the steam is extracted from the turbine after partial expansion at three different locations. The extracted steam is then led to various heat exchangers. The mass flow rates and the temperatures and pressures at each extraction point are given in the following table: Inlet Steam turbine Extraction Location rin(kg/s) P (MPa) T(K) 1 23 4.343 3.054 620 4.345 0.332 482 Extraction 3. 2.871 0.136 x= 0.949 locations Exit 123arrow_forwardSteam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa and 600 C and the exit condition is 50 kPa. The mass flowrate of the steam is 12 kg/s. The turbine produces a power output of 2227.2 kW. Also, it is known that the inlet steam enthalpy is 3674.9 kJ/kg. In the question that follows, select the answer that is closest to the true value. What is the steam exit temperature in units of C? 300 200 400 500arrow_forwardSteam is used to heat a cylindrical open tank of water until it boils, after which a proportion of the water in the tank is vaporised. The tank has an internal diameter of 1 m and is initially filled with water to a depth of 2 m. At the start of the process, this water is at 19°C and has a density of 998 kg/m3 . It may be assumed that ambient atmospheric pressure is 1 bar and that any effects arising from hydrostatic head can be ignored, as can heat losses from the tank to the surrounding environment. The heating medium is saturated steam at 5 bar, which enters a heating coil at the base of the tank at 5 kg/min, loses heat to the water in the tank and condenses to form saturated liquid condensate at this pressure. Using the steam table supplied: a) Find the temperature (°C) and power rating (kW) of the heater coil. b) Find the boiling point of the water in the tank under these conditions, and the time required to bring the water to this temperature. c) Find the proportion of water…arrow_forward
- Refrigerant-134a enters an adiabatic compressor at 100 kPa and 0 "C with a volumetric flow rate of 0.3 m3/s and leaves at a pressure of 700 kPa. The power input to the compressor is 35 kW. Using the property tables for R-134a in Appendices A-11 to A-13, Determine the following stream properties and report them in the units shown and to the requested decimal place: A. The mass flow rate of the refrigerant: kg/s (Report to 3 decimal places, eg: 0.123) B. The enthalpy of the exit stream: KJ/kg (Report to 2 decimal places, eg: 0.23) C. The temperature of the exit stream: °C (Report to 1 decimal place, eg: 0.1) 100 KPa, 0°C V = 0.3 m³ /s %3D A A R-134 a 35 KW 700 KPaarrow_forwardSteam is to be condensed in the condenser of a steam power plant at a temperature of 50°C with cooling water from a nearby lake, which enters the tubes of the condenser at 18°C at a rate of 101 kg/s and leaves at 27°C. Determine the rate of condensation of the steam in the condenser.arrow_forwardA rigid, insulated tank that is initially evacuated is connected through a valve to a supply line that carries Helium at 200 kPa and 120°C. Now the valve is opened, and helium is allowed to flow into the tank until the pressure reaches 200 kPa, at which point the valve is closed. Determine the final temperature of the Helium in the tank if the specific heat ratio for Helium (k=Cp*/Cv*) is 1.667.arrow_forward
- A pipeline carries a flow of 60.34 m3/min of steam at 1.00 MPa and 20.09°C superheat. Determine the mass flow rate of steam in kg/min.arrow_forwardI need 100% correct answer. I will rate with 3-4 votes but need correct answer please.arrow_forwardAir at 600 kPa and 500 K enters an adiabatic nozzle that has an inlet-to-exit area ratio of 2:1 with a velocity of 120 m/s and leaves with a velocity of 380 m/s. Determine (a) the exit temperature and (b) the exit pressure of the air.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY