EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.5, Problem 79P
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 0.6 m3/s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 160°C at a rate of 0.95 kg/s and leave at 95°C. Determine the rate of heat transfer to the air and its outlet temperature.
FIGURE P5–79
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 0.75 m3/s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 160°C at a rate of 0.95 kg/s and leave at 95°C. Determine the rate of heat transfer to the air and its outlet temperature.
The rate of heat transfer to the air is ___ kW.
The outlet temperature is ___°C.
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 1.6 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 180°C at a rate of 2.2 kg/s and leave at 95°C. Determine the rate of heat transfer to the air.
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 1.6 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 180°C at a rate of 2.2 kg/s and leave at 95°C. Determine the rate of entropy generation.
Chapter 5 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 5.5 - Prob. 1PCh. 5.5 - Define mass and volume flow rates. How are they...Ch. 5.5 - Does the amount of mass entering a control volume...Ch. 5.5 - Consider a device with one inlet and one outlet....Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - 5–6E Air whose density is 0.078 lbm/ft3 enters the...Ch. 5.5 - 5–7 Air enters a 28-cm diameter pipe steadily at...Ch. 5.5 - A steady-flow compressor is used to compress...Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - 5–10 A cyclone separator like that in Fig. P5–10...
Ch. 5.5 - 5–11 A spherical hot-air balloon is initially...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - 5–13 A pump increases the water pressure from 100...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - Prob. 15PCh. 5.5 - Prob. 16PCh. 5.5 - 5–17C What is flow energy? Do fluids at rest...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - Prob. 19PCh. 5.5 - Prob. 20PCh. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - Prob. 25PCh. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Prob. 35PCh. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Prob. 38PCh. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - 5–40C Consider an air compressor operating...Ch. 5.5 - Prob. 41PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - 5–43E Air flows steadily through an adiabatic...Ch. 5.5 - Prob. 44PCh. 5.5 - Prob. 45PCh. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Prob. 48PCh. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Prob. 50PCh. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Prob. 52PCh. 5.5 - 5–54 An adiabatic gas turbine expands air at 1300...Ch. 5.5 - Prob. 55PCh. 5.5 - Prob. 56PCh. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - Prob. 60PCh. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 70PCh. 5.5 - Prob. 71PCh. 5.5 - Prob. 72PCh. 5.5 - Prob. 73PCh. 5.5 - Prob. 74PCh. 5.5 - Prob. 76PCh. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Prob. 78PCh. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - Prob. 80PCh. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - Prob. 82PCh. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Prob. 89PCh. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Prob. 92PCh. 5.5 - 5–93 A scaled electronic box is to be cooled by...Ch. 5.5 - Prob. 94PCh. 5.5 - Prob. 95PCh. 5.5 - Prob. 96PCh. 5.5 - Prob. 97PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - Prob. 99PCh. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 101PCh. 5.5 - Prob. 102PCh. 5.5 - A house has an electric heating system that...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - Prob. 106PCh. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - Prob. 108PCh. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - 5–113 A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 114PCh. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 116PCh. 5.5 - Prob. 117PCh. 5.5 - Prob. 118PCh. 5.5 - Prob. 119PCh. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - Prob. 122PCh. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - Prob. 124PCh. 5.5 - Prob. 125PCh. 5.5 - Prob. 126PCh. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - Prob. 135RPCh. 5.5 - Prob. 136RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - 5–139 Saturated refrigerant-134a vapor at 34°C is...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Prob. 141RPCh. 5.5 - Prob. 142RPCh. 5.5 - Prob. 143RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Prob. 148RPCh. 5.5 - Prob. 149RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - Prob. 151RPCh. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Prob. 153RPCh. 5.5 - Prob. 154RPCh. 5.5 - Prob. 155RPCh. 5.5 - Prob. 156RPCh. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - Prob. 161RPCh. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - Prob. 171RPCh. 5.5 - Prob. 172RPCh. 5.5 - Prob. 173RPCh. 5.5 - Prob. 174RPCh. 5.5 - Prob. 175RPCh. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - Prob. 179RPCh. 5.5 - Prob. 181RPCh. 5.5 - Prob. 182RPCh. 5.5 - Prob. 184RPCh. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - Prob. 189RPCh. 5.5 - Prob. 190RPCh. 5.5 - Prob. 191RPCh. 5.5 - Prob. 192FEPCh. 5.5 - Prob. 193FEPCh. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 198FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Prob. 203FEPCh. 5.5 - Prob. 204FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 1.6 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 180°C at a rate of 2.2 kg/s and leave at 95°C. Determine the outlet temperature of the air.arrow_forwardOutdoor air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 101 kPa and 30°C at a rate of 0.5 m3 /s. The combustion gases (cp = 1.10 kJ/kg·°C) enter at 350°C at a rate of 0.85 kg/s and leave at 260°C. Determine the rate of heat transfer to the air and the rate of exergy destruction in the heat exchanger.arrow_forward5-84 Air (Cp=1.005 kJ/kg°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°Ct at rate of 0.6 m³/s. The combustion gases (Cp=1.10 kJ/kg°C) that enter at 160°C at a rate of 0.95 kg/s and leave at 95°C. Determine the rate of heat transfer to the air and its outlet temperature. Air 95 kPa 20°C 0.6 m³/s Exhaust gases 0.95 kg/s 95°Carrow_forward
- Hot air at 400°C and 150 kPa is to be used to produce saturated steam at 200°C in an insulated, non-mixing heat exchanger. Water enters the heat exchanger at 20°C while the air leaves at 350°C. The mass flow rate of air is 0.8 kg/s, pressure drops are negligible, and specific heats for air are evaluated at the average air temperature.What is the mass flow rate of water, in kg/s. Report your answer to four decimal places using rounding.arrow_forwardFeedwater heaters are used to increase the efficiency of steam power plants. A particular heater is used to preheat 10 kg/s of boiler feed water from 20° C to 188° C at a pressure of 1200 kPa by mixing it with saturated steam bled from a turbine at 1200 kPa and 188° C. Although insulated, the heater loses heat at the rate of 50 j per gram of exiting mixture. What fraction of the exit stream is steam?arrow_forwardHot combustion gases enter the nozzle of a turbojet engine at 350 kPa, 1007 0C, and 95 m/s, and they exit at a pressure of 100 kPa. Assuming an isentropic efficiency of 95 percent and treating the combustion gases as air determine a- The exit velocity b- The exit temperaturearrow_forward
- Water vapor enters an isentropic turbine at a flow rate of 1 kg/s, a temperature of 500 °C and a pressure of 3000 kPa. Isentropic turbine has two outputs. While 20% of the inlet flow leaves the turbine at a temperature of 350°C and a pressure of 1000 kPa from one of the outlets, the remainder is separated from the other outlet at 200°C and at 200 kPa pressure. Assuming the ambient temperature is 25 °C. a) Find the isentropic efficiency of the turbine. b) Find the second law efficiency of the turbine.arrow_forwardThis question related to thermodynamicsarrow_forwardWhat is the mass flow rate in hot stream kg/s?arrow_forward
- It is suggested to pump 5,000 kg/h of a liquid at 114°C and 1.1 atm abs pressure from a reboiler of a distillation tower to a second distillation unit without cooling the liquid before this joins the pump in a given industrial operation. The liquid has a density of 866 kg/ m2 and a vapor pressure of 1.1 atm at this heat.condition. The reboiler-to-pump line has a friction loss of 5 kN/m2. a. To achieve a net positive suction head of 2.5 m, how far must the liquid level in the reboiler be maintained? b. Compute the power needed to drive the pump if the liquid is to be elevated 5 meters, the pressure in the second unit is atmospheri and the discharge line friction loss is 25 kN/ m2. The pump discharge line has a velocity of 2 m/s, and the pump-motor efficiency is 65 percent.arrow_forwardHot exhaust gases leaving an internal combustion engine at 400°C and 150 kPa at a rate of 0.8 kg/s are to be used to produce saturated steam at 200°C in an insulated heat exchanger. Water enters the heat exchanger at the ambient temperature of 20°C, and the exhaust gases leave the heat exchanger at 350°C. Determine the rate of exergy destruction in the heat exchanger.arrow_forwardAn adiabatic and steady-flow turbine with air as the working fluid initially at 6000 kPa and 550 K has a flow rate of 13.5 kg/s. At the exit of this turbine the air expands by 10 times its original specific volume to a pressure of 320 kPa. (a)What is the temperature of the air at the outlet of the turbine (in K)? Provide your answer up to 1 decimal place using rounding (b)Assume that specific heats vary with temperature. What is the power produced in kW? Round your answer to the nearest whole number. (c)If specific heats are evaluated at the average temperature, what is the power produced by this turbine in kW? Round your answer to the nearest whole number.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License