Vector Mechanics for Engineers: Statics and Dynamics
Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.4, Problem 5.134P
To determine

The centroid of the section.

Expert Solution & Answer
Check Mark

Answer to Problem 5.134P

The centroid of the section (x¯,y¯,z¯) is (0,516h,14h).

Explanation of Solution

Refer Figure 1 and Figure 2.

Vector Mechanics for Engineers: Statics and Dynamics, Chapter 5.4, Problem 5.134P , additional homework tip  1Vector Mechanics for Engineers: Statics and Dynamics, Chapter 5.4, Problem 5.134P , additional homework tip  2

Consider an elemental section of the given section.

Write an expression to calculate the volume of the element.

dV=2xydz (I)

Here, dz is the thickness of the element, dV is the volume of the element, y is the height of the element and x is the width of the element.

From the symmetry, write an expression to calculate the distance of centroid of the section from x-axis.

x¯=0 (II)

Here, x¯ is the distance of centroid of section from x axis.

From the symmetry, write an expression to calculate the distance of centroid of the section from x-axis.

x¯=0 (II)

Here, x¯ is the distance of centroid of section from x axis.

Write an expression to calculate the distance of centroid of element from z-axis.

z¯EL=z (IV)

Here, z¯EL is the distance of centroid of element from z axis.

Write an expression to calculate width of the element.

x=abb2z2 (V)

Here, a is the semi major axis of the elliptical plane and b is the semi minor axis of the elliptical plane.

Write an expression to calculate the height of the element.

y=(h/2)bz+h2=(h2b)(bz) (VI)

Here, h is the height of the element.

Write an expression to calculate the volume of the section.

V=2xydz (VII)

Write an expression to calculate the thickness of the section.

z=bsinθ (VIII)

Differentiate the equation to calculate the thickness of the element.

dz=bcosθdθ (IX)

Write an expression to find the distance of the centroid of the section from x axis.

x¯=x¯ELdVV (X)

Here, x¯ is the distance of centroid of section from x axis.

Write an expression to find the distance of the centroid of the section from x axis.

y¯=y¯ELdVV (XI)

Here, y¯ is the distance of centroid of section from y axis.

Write an expression to find the distance of the centroid of the section from z axis.

z¯=z¯ELdVV (XII)

Here, z¯ is the distance of centroid of section from z axis.

Conclusion:

Substitute (V), (VI) and (IX) in equation (VII) to find V.

V=bb(2abb2z2)((h2b)(bz))dz=ahb2π/2π/2(bcosθ)(b(1sinθ))bcosθdθ=abhπ/2π/2(cos2θsinθcos2θ)dθ=abh(θ2+sin2θ4+13cos3θ)|π/2π/2=12πabh (XIII)

write an expression to calculate the distance of centroid of the element from x-axis.

x¯=0

Write an expression to calculate y¯ELdV.

y¯ELdV=bb(12(h2b)(bz))((2abb2z2)((h2b)(bz))dz)=14ah2b3bb(bz)2b2z2dz=14ah2b3π/2π/2(bbsinθ)2b2(bsinθ)2(bcosθdθ)=14ah2b3π/2π/2(b(1sinθ))2(bcosθ)(bcosθdθ)=14abh2π/2π/2cos2θ2sinθcos2θ+sin2θcos2θdθ=14abh2π/2π/2cos2θ2sinθcos2θ+(12(1cos2θ))(12(1+cos2θ))dθ=14abh2π/2π/2cos2θ2sinθcos2θ+14(1cos22θ)dθ=14abh2((θ2+sin2θ4)+13cos3θ+14θ14(θ2+sin4θ8))|π/2π/2=532πabh2 (XIV)

Substitute equation (XIII) and (XIV) in equation (XI) to find y¯.

y¯=532πabh212πabh=516h

Write an expression to calculate z¯ELdV.

z¯ELdV=bbz(2aba2z2(h2b)(bz))dz=ahb2bbz(bz)b2z2dz=ahb2π/2π/2(bsinθ)(b(1sinθ))(bcosθ)(bcosθdθ)=ab2hπ/2π/2(sinθcos2θsin2θcos2θ)dθ=ab2hπ/2π/2(sinθcos2θ14(1cos22θ))dθ=ab2h(13cos3θ14θ+14(θ2sin4θ8))|π/2π/2=18πabh2 (XV)

Substitute equation (XIII) and (XV) in equation (XII) to find z¯.

z¯=18πabh212πabh=14h

Thus, the centroid of the section (x¯,y¯,z¯) is (0,516h,14h).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.
please help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoa
Solve this problem and show all of the work

Chapter 5 Solutions

Vector Mechanics for Engineers: Statics and Dynamics

Ch. 5.1 - Prob. 5.11PCh. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Prob. 5.13PCh. 5.1 - 5.10 through 5.15 Locate the centroid of the plane...Ch. 5.1 - Prob. 5.15PCh. 5.1 - PROBLEM 5.16 Determine the y coordinate of the...Ch. 5.1 - Show that as r1 approaches r2, the location of the...Ch. 5.1 - Prob. 5.18PCh. 5.1 - Prob. 5.19PCh. 5.1 - Prob. 5.20PCh. 5.1 - Prob. 5.21PCh. 5.1 - The horizontal x-axis is drawn through the...Ch. 5.1 - PROBLEM 5.23 The first moment of the shaded area...Ch. 5.1 - Prob. 5.24PCh. 5.1 - Prob. 5.25PCh. 5.1 - Prob. 5.26PCh. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.28PCh. 5.1 - The frame for a sign is fabricated from thin, flat...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - Prob. 5.32PCh. 5.1 - Knowing that the distance h has been selected to...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - Prob. 5.39PCh. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.42 Determine by direct integration the centroid...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - A homogeneous wire is bent into the shape shown....Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - Prob. 5.49PCh. 5.2 - Prob. 5.50PCh. 5.2 - Determine the centroid of the area shown when a =...Ch. 5.2 - Prob. 5.52PCh. 5.2 - 5.53 Determine the volume and the surface area of...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Prob. 5.55PCh. 5.2 - Prob. 5.56PCh. 5.2 - Prob. 5.57PCh. 5.2 - Prob. 5.58PCh. 5.2 - Prob. 5.59PCh. 5.2 - Determine the capacity, in liters, of the punch...Ch. 5.2 - Determine the volume and total surface area of the...Ch. 5.2 - Prob. 5.62PCh. 5.2 - Determine the total surface area of the solid...Ch. 5.2 - Prob. 5.64PCh. 5.2 - The shade for a wall-mounted light is formed from...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - Prob. 5.67PCh. 5.3 - Prob. 5.68PCh. 5.3 - Prob. 5.69PCh. 5.3 - Prob. 5.70PCh. 5.3 - Prob. 5.71PCh. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - Determine (a) the distance a so that the vertical...Ch. 5.3 - Prob. 5.75PCh. 5.3 - 5.76 Determine the reactions at the beam supports...Ch. 5.3 - Prob. 5.77PCh. 5.3 - The beam AB supports two concentrated loads and...Ch. 5.3 - For the beam and loading of Prob. 5.78, determine...Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - Prob. 5.81PCh. 5.3 - The dam for a lake is designed to withstand the...Ch. 5.3 - Prob. 5.83PCh. 5.3 - 5.84 An automatic valve consists of a 9 × 9-in....Ch. 5.3 - 5.85 An automatic valve consists of a 9 × 9-in....Ch. 5.3 - Prob. 5.86PCh. 5.3 - The 3 4-m side of an open tank is hinged at its...Ch. 5.3 - Prob. 5.88PCh. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - Prob. 5.90PCh. 5.3 - Prob. 5.91PCh. 5.3 - Prob. 5.92PCh. 5.3 - Prob. 5.93PCh. 5.3 - Prob. 5.94PCh. 5.3 - The square gate AB is held in the position shown...Ch. 5.4 - Consider the composite body shown. Determine (a)...Ch. 5.4 - Prob. 5.97PCh. 5.4 - Prob. 5.98PCh. 5.4 - Prob. 5.99PCh. 5.4 - Prob. 5.100PCh. 5.4 - Prob. 5.101PCh. 5.4 - Prob. 5.102PCh. 5.4 - Prob. 5.103PCh. 5.4 - For the machine element shown, locate the y...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - A corner reflector for tracking by radar has two...Ch. 5.4 - A wastebasket, designed to fit in the corner of a...Ch. 5.4 - Prob. 5.110PCh. 5.4 - Prob. 5.111PCh. 5.4 - Prob. 5.112PCh. 5.4 - Prob. 5.113PCh. 5.4 - A thin steel wire with a uniform cross section is...Ch. 5.4 - The frame of a greenhouse is constructed from...Ch. 5.4 - Locate the center of gravity of the figure shown,...Ch. 5.4 - PROBLEM 5.117 Locate the center of gravity of the...Ch. 5.4 - A scratch awl has a plastic handle and a steel...Ch. 5.4 - Prob. 5.119PCh. 5.4 - PROBLEM 5.120 A brass collar, of length 2.5 in.,...Ch. 5.4 - Prob. 5.121PCh. 5.4 - Prob. 5.122PCh. 5.4 - Prob. 5.123PCh. 5.4 - Prob. 5.124PCh. 5.4 - PROBLEM 5.125 Locate the centroid of the volume...Ch. 5.4 - PROBLEM 5.126 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.127PCh. 5.4 - Prob. 5.128PCh. 5.4 - PROBLEM 5.129 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.130PCh. 5.4 - Prob. 5.131PCh. 5.4 - PROBLEM 5.132 The sides and the base of a punch...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Prob. 5.134PCh. 5.4 - Prob. 5.135PCh. 5.4 - Alter grading a lot, a builder places four stakes...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - Prob. 5.139RPCh. 5 - Prob. 5.140RPCh. 5 - Prob. 5.141RPCh. 5 - Prob. 5.142RPCh. 5 - Determine the reactions at the supports for the...Ch. 5 - A beam is subjected to a linearly distributed...Ch. 5 - Prob. 5.145RPCh. 5 - Prob. 5.146RPCh. 5 - An 8-in.-diameter cylindrical duct and a 4 8-in....Ch. 5 - Three brass plates are brazed to a steel pipe to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Mechanical Engineering: Centroids & Center of Gravity (1 of 35) What is Center of Gravity?; Author: Michel van Biezen;https://www.youtube.com/watch?v=Tkyk-G1rDQg;License: Standard Youtube License