Define a game G as follows: Begin with a pile of n stones and 0 points. In the first move split the pile into two possibly unequal sub-piles, multiply the number of stones in one sub-pile times the number of stones in the other sub-pile, and add the product to your score. In the second move, split each of the newly created piles into a pair of possibly unequal sub-piles, multiply the number of stones in each sub-pile times the number of stones in the paired sub-pile, and add the new products to your score. Continue by successively splitting each newly created pile of stones that has at least two stones into a pair of sub-piles, multiplying the number of stones in each sub-pile times the number of stones in the paired sub-pile, and adding the new products to your score. The game G ends when no pile contains more than one stone.
a. Play G starting with 10 stones and using the following initial moves. In move 1 split the pile of 10 stones into two sub-piles with 3 and 7 stones respectively, compute
b. Play G again starting with 10 stones, but use a different initial move from the one in part (a). Show your final score along with a record of the numbers of stones in the piles you created with your moves.
c. Show that you can use strong mathematical induction to prove that for every integer
Trending nowThis is a popular solution!
Chapter 5 Solutions
DISCRETE MATHEMATICS WITH APPLICATION (
- Example: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardThis box plot represents the score out of 90 received by students on a driver's education exam. 75% of the students passed the exam. What is the minimum score needed to pass the exam? Submitting x and Whickers Graph Low 62, C 62 66 70 74 78 82 86 90 Driver's education exam score (out of 90)arrow_forwardExample: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forward
- Please can you give detailed steps on how the solutions change from complex form to real form. Thanks.arrow_forwardExamples: Solve the following differential equation using Laplace transform (e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1arrow_forwardExamples: Solve the following differential equation using Laplace transform (a) y" +2y+y=t with y(0) = 0, and y'(0) = 1arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education