EBK INTRODUCTION TO THE PRACTICE OF STA
EBK INTRODUCTION TO THE PRACTICE OF STA
9th Edition
ISBN: 8220103674638
Author: Moore
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.3, Problem 71E

(a)

To determine

To find: The probability that the sample proportion lies between 0.59 and 0.65.

(a)

Expert Solution
Check Mark

Answer to Problem 71E

Solution: The probability that a randomly selected sample has proportion between 0.59 and 0.65 is 0.832.

Explanation of Solution

Calculation: The mean of the binomial distribution is calculated as.

n×p=500×0.62=310

The standard deviation (σX) of the binomial distribution is calculated as,

σX=np(1p)=500×0.62×0.38=10.85

Also,

n(1p)=500×(10.62)=190

As np and n(1p) are greater than 10, the binomial distribution can be approximated to normal distribution with mean 310 and variance 117.8.

Now, obtain the Z-scores for p1 and p2 as shown below,

The Z score for p1=0.59 is calculated as,

Z=np1npnpq=500×0.5931010.85=1.38

The Z score for p2=0.65 is calculated as,

Z+=np2npnpq=500×0.6531010.85=1.38

Now, calculate the probability that the sample proportion p^ of those who received nasty messages falls between 0.59 and 0.65 as shown below,

P(0.59p^0.65)=P(1.38Z1.38)=P(Z1.38)P(Z1.38)

By using the standard normal table, the areas corresponding to probabilities P(Z1.38) and P(Z1.38) are 0.916 and 0.084, respectively.

So,

P(0.59p^0.65)=P(Z1.38)P(Z1.38)=0.9160.084=0.832

Hence, the required probability is 0.832.

(b)

To determine

To find: The probability that the sample proportion lies between 0.87 and 0.93.

(b)

Expert Solution
Check Mark

Answer to Problem 71E

Solution: The probability that a randomly selected sample has proportion between 0.87 and 0.93 is 0.974.

Explanation of Solution

Calculation: The mean of the binomial distribution is calculated as.

n×p=500×0.90=450

The standard deviation (σX) of the binomial distribution is calculated as,

σX=np(1p)=500×0.9×0.1=6.7

Also,

np(1p)=500×0.9×(10.9)=45

As np and np(1p) are greater than 10, the binomial distribution can be approximated to normal distribution with mean 450 and standard deviation 6.7.

Now, obtain the Z scores for p1 and p2 as shown below,

The Z score for p1=0.87 is calculated as,

Z=np1npnpq=500×0.874506.7=2.23

The Z score for p2=0.93 is calculated as,

Z+=np2npnpq=500×0.934506.7=2.23

Now, calculate the probability that the sample proportion p^ falls between 0.87 and 0.93 as shown below,

P(0.87p^0.93)=P(2.23Z2.23)=P(Z2.23)P(Z2.23)

By using the standard normal table, the areas corresponding to probabilities P(Z2.23) and P(Z2.23) are 0.987 and 0.012 respectively.

So,

P(0.87p^0.93)=P(Z2.23)P(Z2.23)=0.9870.012=0.975

Hence, the required probability is 0.975.

(c)

To determine

To explain: The effect on the probability of sample proportion p^ - that it falls within ±3% of the population proportion (p) value as the value of p gets closer to 1, by using the results of parts (a) and (b).

(c)

Expert Solution
Check Mark

Answer to Problem 71E

Solution: As the value of true population proportion p goes closer to 1, the probability of sample proportion p^ falling within ±3% will increase.

Explanation of Solution

The value of probability depends on the standard deviation. When true proportion p goes closer to one, it will attain the maximum value and then the standard deviation will decreases, so the overall value of probability will increase.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Month    Number (Thousands)Dec 1991    65.60Jan 1992    71.60Feb 1992    78.80Mar 1992    111.60Apr 1992    107.60May 1992    115.20Jun 1992    117.80Jul 1992    106.20Aug 1992    109.90Sep 1992    106.00Oct 1992    111.80Nov 1992    84.50Dec 1992    78.60Jan 1993    70.50Feb 1993    74.60Mar 1993    95.50Apr 1993    117.80May 1993    120.90Jun 1993    128.50Jul 1993    115.30Aug 1993    121.80Sep 1993    118.50Oct 1993    123.30Nov 1993    102.30Dec 1993    98.70Jan 1994    76.20Feb 1994    83.50Mar 1994    134.30Apr 1994    137.60May 1994    148.80Jun 1994    136.40Jul 1994    127.80Aug 1994    139.80Sep 1994    130.10Oct 1994    130.60Nov 1994    113.40Dec 1994    98.50Jan 1995    84.50Feb 1995    81.60Mar 1995    103.80Apr 1995    116.90May 1995    130.50Jun 1995    123.40Jul 1995    129.10Aug 1995…
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Year    Month    Units1    Nov    42,1611    Dec    44,1862    Jan    42,2272    Feb    45,4222    Mar    54,0752    Apr    50,9262    May    53,5722    Jun    54,9202    Jul    54,4492    Aug    56,0792    Sep    52,1772    Oct    50,0872    Nov    48,5132    Dec    49,2783    Jan    48,1343    Feb    54,8873    Mar    61,0643    Apr    53,3503    May    59,4673    Jun    59,3703    Jul    55,0883    Aug    59,3493    Sep    54,4723    Oct    53,164
High Cholesterol: A group of eight individuals with high cholesterol levels were given a new drug that was designed to lower cholesterol levels. Cholesterol levels, in milligrams per deciliter, were measured before and after treatment for each individual, with the following results: Individual Before 1 2 3 4 5 6 7 8 237 282 278 297 243 228 298 269 After 200 208 178 212 174 201 189 185 Part: 0/2 Part 1 of 2 (a) Construct a 99.9% confidence interval for the mean reduction in cholesterol level. Let a represent the cholesterol level before treatment minus the cholesterol level after. Use tables to find the critical value and round the answers to at least one decimal place.

Chapter 5 Solutions

EBK INTRODUCTION TO THE PRACTICE OF STA

Ch. 5.1 - Prob. 11ECh. 5.1 - Prob. 12ECh. 5.1 - Prob. 13ECh. 5.1 - Prob. 14ECh. 5.1 - Prob. 15ECh. 5.1 - Prob. 16ECh. 5.2 - Prob. 17UYKCh. 5.2 - Prob. 18UYKCh. 5.2 - Prob. 19UYKCh. 5.2 - Prob. 20UYKCh. 5.2 - Prob. 21UYKCh. 5.2 - Prob. 22UYKCh. 5.2 - Prob. 23UYKCh. 5.2 - Prob. 24UYKCh. 5.2 - Prob. 25ECh. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.3 - Prob. 43UYKCh. 5.3 - Prob. 44UYKCh. 5.3 - Prob. 45UYKCh. 5.3 - Prob. 46UYKCh. 5.3 - Prob. 47UYKCh. 5.3 - Prob. 48UYKCh. 5.3 - Prob. 49UYKCh. 5.3 - Prob. 50UYKCh. 5.3 - Prob. 51UYKCh. 5.3 - Prob. 52UYKCh. 5.3 - Prob. 53UYKCh. 5.3 - Prob. 54UYKCh. 5.3 - Prob. 55UYKCh. 5.3 - Prob. 56UYKCh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 64ECh. 5.3 - Prob. 65ECh. 5.3 - Prob. 66ECh. 5.3 - Prob. 67ECh. 5.3 - Prob. 68ECh. 5.3 - Prob. 69ECh. 5.3 - Prob. 70ECh. 5.3 - Prob. 71ECh. 5.3 - Prob. 72ECh. 5.3 - Prob. 73ECh. 5.3 - Prob. 74ECh. 5.3 - Prob. 75ECh. 5.3 - Prob. 76ECh. 5.3 - Prob. 77ECh. 5.3 - Prob. 78ECh. 5.3 - Prob. 79ECh. 5.3 - Prob. 80ECh. 5.3 - Prob. 81ECh. 5.3 - Prob. 82ECh. 5.3 - Prob. 83ECh. 5 - Prob. 84ECh. 5 - Prob. 85ECh. 5 - Prob. 86ECh. 5 - Prob. 87ECh. 5 - Prob. 88ECh. 5 - Prob. 89ECh. 5 - Prob. 90ECh. 5 - Prob. 91ECh. 5 - Prob. 92ECh. 5 - Prob. 93ECh. 5 - Prob. 94ECh. 5 - Prob. 95ECh. 5 - Prob. 96ECh. 5 - Prob. 97ECh. 5 - Prob. 98ECh. 5 - Prob. 99ECh. 5 - Prob. 100ECh. 5 - Prob. 101ECh. 5 - Prob. 102E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License