Precision Machining Technology (MindTap Course List)
2nd Edition
ISBN: 9781285444543
Author: Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.3, Problem 5RQ
Calculate spindle RPM and machining time for cutting a 1.5" diameter 4" long at 225 SFPM using a feed rate of 0.004".
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A shaper is operated at 120 cutting strokes per minute and is used to machine a work piece of 250 mm in
length and 120 mm wide. Use a feed of 0.6 mm per stroke and a depth of cut of 6 mm. Calculate the total
machining time to for machining the component. If the forward stroke is completed in 230°, calculate the
percentage of the time when the tool is not contacting the work piece.
Find the machining time required to turn a mild steel rod from 65mm to 58
mm over a length of 100 mm by using a carbide insert. If the approach length
and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is
=0.2 mm/rev, and the depth of cut is 0.5mm
A surface of 43 mm x 246 mm will be machined by using a shaper and 7 mm
deep stock will be removed from the surface. The shaper is operating at 24
strokes/minute and feed is 0.7 mm/stroke. If the maximum stroke length is 827
mm and allowable depth of cut is 0.4 mm for both of rough and finish cuts,
what is the total machining time, in minutes ?
Chapter 5 Solutions
Precision Machining Technology (MindTap Course List)
Ch. 5.1 - List the four main parts of the engine lathe.Ch. 5.1 - What are the two main purposes of the lathe...Ch. 5.1 - What part of the lathe is used to set the feed...Ch. 5.1 - Prob. 4RQCh. 5.1 - Prob. 5RQCh. 5.1 - What is the purpose of the leads crew of a lathe?Ch. 5.1 - What two functions can the lathe tailstock...Ch. 5.1 - The standard taper in most lathe tailstocks is the...Ch. 5.1 - Define the swing and the bed length of a lathe.Ch. 5.2 - What is the special name for the type of jaw-type...
Ch. 5.2 - The most common variation of the above chuck has...Ch. 5.2 - Name two material shapes that can be properly held...Ch. 5.2 - List two advantages of using a self-centering...Ch. 5.2 - Name two material shapes that can be properly held...Ch. 5.2 - List three benefits of holding a workpiece between...Ch. 5.2 - List three potential advantages of using an...Ch. 5.2 - List three characteristics of a workpiece that...Ch. 5.2 - What type of mandrel would be ideal for gripping a...Ch. 5.2 - Name the type of tailstock center that raid be...Ch. 5.2 - What two auxiliary devices can be used to...Ch. 5.2 - Explain the differences between the two auxiliary...Ch. 5.2 - Name the device that is used to transmit the...Ch. 5.2 - Which two tool posts are the most efficient if...Ch. 5.2 - Which device may be used for either toolholding or...Ch. 5.3 - If a 0.050" depth of cut is taken on the diameter...Ch. 5.3 - A lathe cross slide uses a diameter-reading...Ch. 5.3 - In what units are feed rates measured for lathe...Ch. 5.3 - Are deeper cuts used for roughing or finishing...Ch. 5.3 - Calculate spindle RPM and machining time for...Ch. 5.3 - List three safety precautions related to clothing...Ch. 5.3 - What two materials are most commonly used for...Ch. 5.3 - What feature of a lathe cutting tool has a direct...Ch. 5.3 - Is a left-hand or right-hand tool normally used...Ch. 5.3 - What part of the lathe is used to feed the tool...Ch. 5.3 - When facing, why should the tool not be fed past...Ch. 5.3 - Should a left-hand or right-hand tool be used when...Ch. 5.3 - When and how should chips he removed from the work...Ch. 5.3 - What are two reasons for center drilling on the...Ch. 5.3 - When drilling and reaming on the lathe, how are...Ch. 5.3 - How can hole depth be controlled during drilling...Ch. 5.3 - What are two reasons boring may be selected to...Ch. 5.3 - Why must extra care be taken when performing...Ch. 5.3 - How can a tap be aligned when threading a hole on...Ch. 5.3 - Briefly define form cutting.Ch. 5.3 - How do grooving and cutoff speeds compare to...Ch. 5.3 - How can tool binding be overcome when cutting deep...Ch. 5.3 - List the two basic knurl patterns.Ch. 5.3 - How is knurling different from other lathe...Ch. 5.3 - List and briefly describe the two different types...Ch. 5.4 - The distance of actual contact of two mating...Ch. 5.4 - What feature of mating threads determines the...Ch. 5.4 - How many classes of fit are there in the Unified...Ch. 5.4 - Determine the major diameter limits for the...Ch. 5.4 - Determine the minor diameter limits for the...Ch. 5.4 - Determine the pitch diameter limits for the...Ch. 5.4 - Determine the approximate compound-rest in-feed...Ch. 5.4 - What is the name for the rotating device that...Ch. 5.4 - When threading, what is the reason for feeding the...Ch. 5.4 - Prob. 10RQCh. 5.4 - Why should the depth of cut be reduced for each...Ch. 5.4 - What dimension of the thread is measured by using...Ch. 5.4 - What measuring tool is used to visually inspect...Ch. 5.4 - List two applications of Acme threads.Ch. 5.4 - What type of thread is machined on a tapered...Ch. 5.5 - Briefly define a taper.Ch. 5.5 - What is the difference between an included angle...Ch. 5.5 - What does TPI stand for in relation to tapers?Ch. 5.5 - What are the TPI and TPF of a part with end...Ch. 5.5 - What are the corresponding centerline and included...Ch. 5.5 - What is the corresponding centerline angle of a...Ch. 5.5 - What is the limitation of the tool bit taper...Ch. 5.5 - What must be known to use the compound-rest taper...Ch. 5.5 - What taper turning methods allow use of the lathes...Ch. 5.5 - What two steps can be taken to eliminate backlash...Ch. 5.5 - The TPI specified on a print is 0.030". If...Ch. 5.5 - If TPF is 0.42", how much movement should register...Ch. 5.5 - What is the benefit of using the offset tailstock...Ch. 5.5 - What are two ways to reduce uneven pressure on...Ch. 5.5 - Calculate tailstock setover for a 13.5" part with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Nonearrow_forwardIt is required to reduce the thickness of cast iron workpiece with dimensions (L x w x t) of (230 mm x 120 mm x 25 mm) to 22 mm using shaper machine. Given that average cutting speed is 21 m/min, feed 1.2 mm/double stroke, and return/cutting time ratio is 3/4. The approach at each end is 72 mm. If the permissible depth of cut is 2 mm, determine the cutting time in the following cases: i) Using shaper with a mechanically driven ram. ii) Using shaper with a hydraulically driven ram. Solution: i) Mechanically ( ii) Hydraulicallyarrow_forwardHow much machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by turning using a carbide insert. If the approach length and over run length is = 5 mm, Cutting speed is 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mm Darrow_forward
- In turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward17) A50-mm-dia endmill cuts 6061 aluminum with 30% tool engagement at a depth of 6 mm. The tool rotates at 200 rpm and is feeding at 250 mm/min. There are 2 teeth set at a rake angle of 10°. a. Calculate the required power of cutting. b. Determine the spindle torque. c. Determine the cutting force on each tooth. d. If the thrust force is measured to be 350N, estimate the tool-chip interface friction coefficient. How could you physically verify your power estimate?arrow_forwardsolvearrow_forward
- .cutting speed is 9m/min. The return time to cutting time is 1:4 and the feed is 3mm Q.4 (i) Find the time required for taking a cemplete cut on a plate 600 × 900 mm", if the cutting speed is 9m/min. The return time to cutting time is 1:4 and the feed is 3mm for the shaper. The clearance at each end is 75 mm. (11) A hole of 30 mm diameter and 75 mm depth is to be drilled. The feed is 1.3 mm/rev and the cutting speed is 62 m/min. Assuming tool approach and tool over travel as 6 mm. Calculate : (a) Cutting time and (b) Material removal rate Q.5 Write short note on the following - (i) Up milling and down milling processes (ii) Balancing of grinding wheels (iii) Gear hobbing ittp3.7 w w w.ItuommC.comarrow_forwardA single-point cutting tool with 12° rake angle is used to machine a steel work-piece. The depth of cut, i.e. uncut thickness is 0.81 mm. The chip thickness under orthogonal machining condition is 1.8 mm. What is the shear angle.arrow_forwardThe end of a large tubular workpart is to be faced on a NC vertical boring mill. The part has an outside diameter of 38.0 in and an inside diameter of 24.0 in. If the facing operation is performed at a rotational speed of 40.0 rev/min, feed of 0.015 in/rev, and depth of cut of 0.180 in, determine (a) the cutting time to complete the facing operation and the cutting speeds and metal removal rates at the beginning and end of the cut.arrow_forward
- Calculate the machining time to drill four 20 mm diameter holes and one 50 mm diameter central hole in the flange as shown below. Take cutting speed 20 m/min, feed for 20 mm drill 0.2 mm/rev, and for 50 mm drill feed is 0.6 mm/rev, the point angle is 120°? VIVER 20xA 200 D100 SYLON 50arrow_forwardformula and calculationarrow_forwardIn orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool. the cutting velocity is 90 m/min The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm If the orthogonal rake angle is zero and the principal cutting edge angle is 90° Calculate the shear angle in degree.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License