VECTOR MECHANICS FOR ENGINEERS: STATICS
12th Edition
ISBN: 9781260912814
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.3, Problem 5.86P
The 3 × 4-m side AB of a tank is hinged at its bottom A and is held in place by a thin rod BC. The maximum tensile force the rod can withstand without breaking is 200 kN, and the design specifications require the force in the rod not to exceed 20 percent of this value. If the tank is slowly filled with water, determine the maximum allowable depth of water d in the tank.
Fig. P5.86 and P5.87
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 100 lb drum, having a diameter of 23 in., is placed on its side and acts as a dam in
a 2.5 ft. wide water channel. The drum is anchored to the sides of the channel.
Water on the right side of the drum is 23 in. deep while water at the left side of the
drum is 11.5 in. deep.
12.0 Determine the angle of the resultant of the pressure forces acting on the
drum with respect to the horizontal.
a.) 47.9°
c.) 90°
e.)
b.) 57.5°
d.) 55°
O A water channel 12 feet wide is blocked by a rectangular barrier shown by member ABD.
Four supporting struts (member BC) are evenly spaced every 4 feet along the 12-foot width
of the barrier. The weight of barrier ABD is 200 lbs.
Assume the weight of the struts are negligible. The
specific weight of water is 62.4 lb/ft³. Determine the
magnitude of the force in each strut and state whether
the strut is in tension or compression.
A
60°
3 ft
5 ft
3 ft
60°
A vertical trapezoidal gate is used as an automatic valve that is held closed by two springs, which are located along edge AB. Knowing that each spring exerts a torque of magnitude 2500 Nm, determine the depth "d" of water at which the gate will open.
Chapter 5 Solutions
VECTOR MECHANICS FOR ENGINEERS: STATICS
Ch. 5.1 - 5.1 through 5.9 Locate the centroid of the plane...Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.
Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - PROBLEM 5.16 Determine the y coordinate of the...Ch. 5.1 - Show that as r1 approaches r2, the location of the...Ch. 5.1 - For the area shown, determine the ratio a/b for...Ch. 5.1 - For the semiannular area of Prob. 5.12, determine...Ch. 5.1 - A built-up beam is constructed by nailing seven...Ch. 5.1 - The horizontal x axis is drawn through the...Ch. 5.1 - The horizontal x-axis is drawn through the...Ch. 5.1 - PROBLEM 5.23 The first moment of the shaded area...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - The homogeneous wire ABC is bent into a...Ch. 5.1 - The frame for a sign is fabricated from thin, flat...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - Determine the distance h for which the centroid of...Ch. 5.1 - Knowing that the distance h has been selected to...Ch. 5.2 - Determine by direct integration the centroid of...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - Determine by direct integration the centroid of...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - A homogeneous wire is bent into the shape shown....Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - Determine the centroid of the area shown in terms...Ch. 5.2 - Determine the centroid of the area shown when a =...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume of the solid generated by...Ch. 5.2 - Verify that the expressions for the volumes of the...Ch. 5.2 - Knowing that two equal caps have been removed from...Ch. 5.2 - Three different drive belt profiles are to be...Ch. 5.2 - Determine the capacity, in liters, of the punch...Ch. 5.2 - Determine the volume and total surface area of the...Ch. 5.2 - Determine the volume and weight of the solid brass...Ch. 5.2 - Determine the total surface area of the solid...Ch. 5.2 - Determine the volume of the brass collar obtained...Ch. 5.2 - The shade for a wall-mounted light is formed from...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - Determine (a) the distance a so that the vertical...Ch. 5.3 - Determine (a) the distance a so that the reaction...Ch. 5.3 - Determine the reactions at the beam supports for...Ch. 5.3 - Determine (a) the distributed load w0 at the end D...Ch. 5.3 - The beam AB supports two concentrated loads and...Ch. 5.3 - For the beam and loading of Prob. 5.78, determine...Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - The dam for a lake is designed to withstand the...Ch. 5.3 - The base of a dam for a lake is designed to resist...Ch. 5.3 - Prob. 5.84PCh. 5.3 - Prob. 5.85PCh. 5.3 - The 3 4-m side AB of a tank is hinged at its...Ch. 5.3 - The 3 4-m side of an open tank is hinged at its...Ch. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - A 4 2-ft gate is hinged at A and is held in...Ch. 5.3 - Fig. P5.90 5.91 Solve Prob. 5.90 if the gate...Ch. 5.3 - A prismatically shaped gate placed at the end of a...Ch. 5.3 - A prismatically shaped gate placed at the end of a...Ch. 5.3 - A long trough is supported by a continuous hinge...Ch. 5.3 - The square gate AB is held in the position shown...Ch. 5.4 - Consider the composite body shown. Determine (a)...Ch. 5.4 - A cone and a cylinder of the same radius a and...Ch. 5.4 - Determine the location of the center of gravity of...Ch. 5.4 - Prob. 5.99PCh. 5.4 - For the stop bracket shown, locate the x...Ch. 5.4 - Fig. P5.100 and P5.101 5.101 For the stop bracket...Ch. 5.4 - Prob. 5.102PCh. 5.4 - Prob. 5.103PCh. 5.4 - For the machine element shown, locate the y...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - A corner reflector for tracking by radar has two...Ch. 5.4 - A wastebasket, designed to fit in the corner of a...Ch. 5.4 - An elbow for the duct of a ventilating system is...Ch. 5.4 - A window awning is fabricated from sheet metal...Ch. 5.4 - Locate the center of gravity of the sheet-metal...Ch. 5.4 - Locate the center of gravity of the sheet-metal...Ch. 5.4 - A thin steel wire with a uniform cross section is...Ch. 5.4 - The frame of a greenhouse is constructed from...Ch. 5.4 - Locate the center of gravity of the figure shown,...Ch. 5.4 - Prob. 5.117PCh. 5.4 - A scratch awl has a plastic handle and a steel...Ch. 5.4 - PROBLEM 5.117 A bronze bushing is mounted inside a...Ch. 5.4 - PROBLEM 5.120 A brass collar, of length 2.5 in.,...Ch. 5.4 - PROBLEM 5.121 The three legs of a small...Ch. 5.4 - Prob. 5.122PCh. 5.4 - Determine by direct integration the values of x...Ch. 5.4 - Prob. 5.124PCh. 5.4 - PROBLEM 5.125 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.126PCh. 5.4 - Prob. 5.127PCh. 5.4 - PROBLEM 5.128 Locate the centroid of the volume...Ch. 5.4 - PROBLEM 5.129 Locate the centroid of the volume...Ch. 5.4 - Show that for a regular pyramid of height h and n...Ch. 5.4 - PROBLEM 5.131 Determine by direct integration the...Ch. 5.4 - PROBLEM 5.132 The sides and the base of a punch...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Determine by direct integration the location of...Ch. 5.4 - Alter grading a lot, a builder places four stakes...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - Prob. 5.139RPCh. 5 - Determine by direct integration the centroid of...Ch. 5 - Determine by direct integration the centroid of...Ch. 5 - The escutcheon (a decorative plate placed on a...Ch. 5 - Determine the reactions at the supports for the...Ch. 5 - A beam is subjected to a linearly distributed...Ch. 5 - A tank is divided into two sections by a 1 1-m...Ch. 5 - Determine the y coordinate of the centroid of the...Ch. 5 - An 8-in.-diameter cylindrical duct and a 4 8-in....Ch. 5 - Three brass plates are brazed to a steel pipe to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The dam for a lake is designed to withstand the additional force caused by silt that has settled on the lake bottom. Assuming that silt is equivalent to a liquid of density ρs = 1.76 X 10 kg/m' and considering a l-m-wide section of dam. determine the percentage increase in the force acting on the dam face for a silt accumulation of depth 2 m.Fig. P5. 86arrow_forwardThe cross section of a concrete dam is shown below. Knowing that the specific wt of water is 62.4 lb/ft³, determine the resultant force of the water pressure and its direction from horizontal, acting on a 1 ft section of the dam. 14600 lb., 59.2 deg 14600 lb., 30.8 deg 12600 lb., 0 deg O 7490 lb., 90 deg VERTEX OF PARABOLA VET WATER 32arrow_forwardA caisson for closing the entrance to a dry dock is of trapezoidal from 16 m wide at the top and 12 m wide at the bottom and 8 m deep. Find the total force in MN on the caisson if the water on the outside is 1 m below the top level of the caisson and the dock is empty. enclude your free body diagram. a.117.72 b.80.93 c.3.164 d.37.77arrow_forward
- 5.81 The cross section of a concrete dam is as shown. For a 1-ft-wide dam section determine (a) the resultant of the reaction forces exerted by the ground on the base AB of the dam, (b) the point of application of the resultant of part a, (c) the resultant of the pressure forces exerted by the water on the face BC of the dam. 8 ft A r = 21 ft Fig. P5.81 C r= 21 ft Barrow_forwardQuestion 1 (a) The force of the block for holding the gate (b) vertical is T. If gate (a), (b), and (c) of negligible weight and used to hold water in a channel width b, determine in terms of T the force for block gate (a) and (c) Hinge Block la) (b) (c)arrow_forwardDetermine the volume and the surface area of the solid obtained by rotating the area of Prob. 5.8 about (a) the x axis, (b) the y axis.arrow_forward
- Problem 8: -0.6 m- B 0.6 m 0.6 m The gate at the end of a 1-m-wide freshwater channel is fabricated from three 125-kg, rectangular steel plates. The gate is hinged at A and rests against a frictionless support at D. Knowing that d = 0.75 m, determine the reactions at A and D. D = 124.1 N A = 3930 N 45.4°arrow_forwardD 4.8 in. C 1.84 in. B 0.8 in. 5.6 in. 2.4 in. 1.6 in. Fig. P4.43 and P4.44 4.44 A parabolic slot has been cut in plate AD, and the plate has been placed so that the slot fits two fixed, frictionless pins B and C. The equation of the slot is y = x²/4, where x and y are expressed in inches. Knowing that the maximum allowable force exerted on the roller at D is 2 lb, determine (a) the corresponding magnitude of the input force P, (b) the force each pin exerts on the plate.arrow_forwardProblem 4.1Given: A barge may be assumed as a rectangular prism (or cuboid) with a length between perpendiculars of 70 ft., a beam of 30 ft., and a depth of ship of 6 ft. The ship weighs 150 tons (US “short ton”) and this weight may be assumed uniformly distributed in the volume of the ship. The following Cargo was loaded along the center line of the ship relative to the deck (top) of the ship. Required: Considering ONLY transverse stability,a) Find the buoyant force and draft of the vessel.arrow_forward
- e. 235.87 What is the hydrostatic force (kN) that acts on the Gate A-B? Given that the specific gravity of liquid S=3.9. I m Depth of Gate A-B is 6 m 4 m Liquid 30arrow_forwardB1arrow_forwarddepth of water on the upstream and downstream sides of the lock are 6 m and 4 m respectively. Find: is 10 m. Each gate is supported by two hinges located at I m and 5 m above the bottom of the lock. The 24. The end gates ABC of a lock are 8 m high and when closed make an angle of 120°. The width of lat gate, and (i) magnitude of the hinge reactions. [Ans. () 79.279 kN, () Ry=27.924 kN, R,= 51.3SAN sides of the gates are 4 m and 3 m respectively, determine : (i) the magnitude of resultant pressure on cat gates are closed, they make an angle of 120°. The width of the lock is 4 m. If the depths of water on the rwe 4m as shown in Fig. 3.60. Consider width of the gate unity. () Resultant water force on cach gate. 21. Find the horizontal and vertical components of the water pressure exerted on a tainter gate of [Ans. F,= 19.62 kN, F, =710244N] 22. Find the magnitude and direction of the resultant water pressure acting on a curved face of a dam which is shaped WATER SURFACE according to the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY