Concept explainers
sider the Mowing inductive definition of a version ofAekermann's function.This function was named after ttilhelm Ackerniann, a German
mathematician who was a student of the great mathematician David Hilbert. Aekermann's function plays an important role in the theory of recursive functions
and in the study of the complexity of certain algorithms involving set unions. [There are several different variants of this function. All are called Aekermann's
function and have similar properties even though their values do not always agree.)
Exercises 50-57 involve this version of Aekermann's function.
Page3Sl
57. Pr 0ve th atAft J) >j;vhen e v erian djar e n onn egative integer s.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
- (a) Consider the set A = {x R x has a terminating decimal expression}. Is A countable or uncountable? Give a one-sentence justification for your answer. You can use results from the chapter notes. (b) Recall the definition of |A|=|B| for sets A and B, and use the definition to show that |N| = |{/12/2 2}\. You do not need to prove that the function you define is a bijection. : ne z}|arrow_forwardConsider a function machine that accepts inputs as ordered pairs. Suppose the components of the ordered pairs are positive real numbers and the first component is the length of a rectangle and the second is its width. The machine computes the perimeter (the distance around a figure) of the rectangle. Thus, for a rectangle whose length, L, is 3 and whose width, W, is 2, the input is (3,2) and the output is 2.3+2.2, or 10. Complete parts (a) through (c) below. L, W) Y O A. {(0,7), (1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (7,0)) O B. ((0,7), (1,6), (2,5), (3,4)} O C. {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)) O D. {(1,6), (2,5), (3,4)} c. What is the domain and range of the function? 2L + 2W a. For each of the following inputs, find the corresponding output: (1,9), (7,3), (3,7), (√5,√5). The output for (1,9) is The output for (7,3) is The output for (3,7) is The output for (√5,√5) is b. Find the set of all inputs for which the output is 14. O A. The domain of the function is R* XR* and…arrow_forwardConsider a function machine that accepts inputs as ordered pairs. Suppose the components of the ordered pairs are positive real numbers and the first component is the length of a rectangle and the second is its width. The machine computes the perimeter (the distance around a figure) of the rectangle. Thus, for a rectangle whose length, L, is 3 and whose width, W, is 2, the input is (3,2) and the output is 2.3 +2.2, or 10. Complete parts (a) through (c) below. (L, W) A. {(0,9), (1,8), (2,7), (3,6), (4,5)} B. {(1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1)} C. {(1,8), (2,7), (3,6), (4,5)} D. {(0,9), (1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1), (9,0)} c. What is the domain and range of the function? 2L + 2W a. For each of the following inputs, find the corresponding output: (1,9), (7,3), (3,7), (√5,√5). The output for (1,9) is The output for (7,3) is The output for (3,7) is The output for (√5,√5) is b. Find the set of all inputs for which the output is 18. O A. The…arrow_forward
- The nth triangular number is the sum of all the integer numbers from 1 to n. For example, the triangular number of 4, T(4) is 10, because 4+3+2+1 = 10. Write a recursive function T(n) that can find the nth triangular number.arrow_forward#1(L) and #2(L) Only part (L)arrow_forwardThe domain of each of the five functions given is the set of positive integers. When the values of each function are arranged in ascending order, some of these values form arithmetic sequences, some form geometric sequences, and some form a sequence that is neither arithmetic nor geometric. Drag and drop each function into the appropriate category f(z) = 3z +1 g(z) = (z+1) h(z) = 1.5 j(z) = z + 3z2 + 3r+ 1 (-) = Arithmetic Sequence Geometric Sequence Neither of 14 + Back Next Review progress Ouestion 12 INTL Oarrow_forward
- Subject. Date : 1- Define a Recursive function to solve the following problem: fco)-3, F(n+1)= 2f (n) +3 Use loop to implement the recuYsive Function to display the autput when takes the sertu values. 1,2;3,4.arrow_forwardClick and drag the domain and range on the left to their corresponding functions defined on the right, provided lambda (A) is the empty string. The function that assigns to each pair of positive integers the first integer of the pair Domain: Zt and range: {0, 1} The function that assigns to each positive integer its largest decimal digit Domain: Z+ and range: Z+ P The function that assigns to a bit string the number of ones minus the number of zeros in the string Domain: set of bit strings, and range: {1, 11, 111, ...} Domain: ZxZ+ and range: Z+ X The function that assigns to each positive integer the largest integer not exceeding the square root of the integer X The function that assigns to a bit string the longest string of ones in the string Domain: set of bit strings, and range: {A, 1, 11, 111, ...} Domain: Zt and range: (0, 1) Domain: Zt and range: Z Domain: set of all bit strings, and range: Z Domain: set of bit strings, and range: [1, 11, 111, ...) Domain: ZxZ+ and range: Z+…arrow_forwardDefine a function S: Z + --> Z+ as follows.For each positive integer n, S(n) = the sum of the positive divisors of n.(a) S(18) =?(b)S(21) =?arrow_forward
- In chapter 1.1 of “Elementary Number & Its Applications”, Kenneth H. Rosen defines greatest integer function: The greatest integer function in a real number x, denoted by [x], is the largest integer less than or equal to x. That is [x] is an integer satisfying: [x] ≤ x < [x]+1 Kenneth H. Rosen also defines below: The fractional part of a real number x, denoted by {x}, is the difference between x and the largest integer less than or equal to x, namely [x]. That is, {x}=x-[x]. I want to use these definitions to answer the following: Chapter 1.1, Exercise 13: Show that [x+y] ≥ [x] + [y] for all real numbers x and y.arrow_forwardFind a function whose domain is the set of all integers and whose target is the set of all positive integers that satisfies each set of properties.arrow_forward(a) Given any set of seven integers, must there be at least two that have the same remainder when divided by 6? ✔ elements. Hence, if a function is constructed from A to B that relates each of To answer this question, let A be the set of 7 distinct integers and let B be the set of all possible remainders that can be obtained when an integer is divided by 6, which means that B has 6 the integers in A to its remainder, then by the [pigeonhole ✔✔✔ principle, the function is not one-to-one ✔✔✔ . Therefore, for the set of integers in A, it is impossible ✔✔✔ for all the integers to have different remainders when divided by 6. So, the answer to the question is yes (b) Given any set of seven integers, must there be at least two that have the same remainder when divided by 8? If the answer is yes, enter YES. If the answer is no, enter a set of seven integers, no two of which have the same remainder when divided by 8. Xarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,