Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.3, Problem 3EYU
The acceleration of an object has a magnitude a. What is the magnitude of the acceleration in the following cases? (a) All the forces acting on the object are doubled. (b) The mass and the net force acting on the object are doubled. (c) The net force acting on the object is doubled, and its mass is halved. (d) The mass of the object is doubled, and the net force acting on it is halved.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three forces F1 = (-1.5i – 0.8j + 0.7k) N and F2 = (-0.7i + 1.2j) N, and F3= (8.0i + 6.0j + 5.0k) m are applied to an object. Find the magnitude and direction of the net force acting on the object
a box o Cheerios (mass mC = 1.0 kg) and a box of Wheaties (mass mW 3.0 kg) are accelerated across a horizontal surface by a horizontal force applied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0 N, and the magnitude of the frictional force on the Wheaties box is 4.0 N. If the magnitude of is 12 N, what is the magnitude of the force on the Wheaties box from the Cheerios box?
When
Two forces FA and FB are applied to an object whose mass is 9.15 kg. The larger force is FA.
both forces point due east, the object's acceleration has a magnitude of 0.784 m/s². However, when
FA points due east and FB points due west, the acceleration is 0.420 m/s², due east. Find (a) the
magnitude of FA and (b) the magnitude of FB.
(a) Number i
(b) Number i
Units
Units
Chapter 5 Solutions
Physics (5th Edition)
Ch. 5.1 - Two forces have magnitudes F1 and F2. If these...Ch. 5.2 - Which of the following statements is correct? A: A...Ch. 5.3 - The acceleration of an object has a magnitude a....Ch. 5.4 - A force F pushes on three boxes that slide without...Ch. 5.5 - An object is acted on by a single force that is at...Ch. 5.6 - When a certain person steps onto a scale on solid...Ch. 5.7 - Figure 5-23 shows four identical bricks that are...Ch. 5 - Driving down the road, you hit the brakes...Ch. 5 - Youve probably seen pictures of someone pulling a...Ch. 5 - As you read this, you are most likely sitting...
Ch. 5 - When a dog gets wet, it shakes its body from head...Ch. 5 - A young girl slides down a rope. As she slides...Ch. 5 - A block of mass m hangs from a string attached to...Ch. 5 - An astronaut on a space walk discovers that his...Ch. 5 - Two untethered astronauts on a space walk decide...Ch. 5 - In Figure 5-25 Wilbur asks Mr. Ed, the talking...Ch. 5 - A whole brick has more mass than half a brick,...Ch. 5 - The force exerted by gravity on a whole brick is...Ch. 5 - Is it possible for an object at rest to have only...Ch. 5 - Is it possible for an object to be in motion and...Ch. 5 - A bird cage, with a parrot inside, hangs from a...Ch. 5 - Suppose you jump from the cliffs of Acapulco and...Ch. 5 - A friend tells you that since his car is at rest,...Ch. 5 - Since all objects are weightless in orbit, how is...Ch. 5 - To clean a rug, you can hang it from a clothesline...Ch. 5 - If you step off a high board and drop to the water...Ch. 5 - Is it possible for an object to be moving in one...Ch. 5 - Since a bucket of water is weightless in space,...Ch. 5 - In the movie The Rocketeer, a teenager discovers a...Ch. 5 - List three common objects that have a weight of...Ch. 5 - An object of mass m is initially at rest. After a...Ch. 5 - On a planet far, far away, an astronaut picks up a...Ch. 5 - In a grocery store, you push a 15.4-kg shopping...Ch. 5 - You are pulling your little sister on her sled...Ch. 5 - A 0.53-kg billiard ball initially at rest is given...Ch. 5 - A 92-kg water skier floating in a lake is pulled...Ch. 5 - A 0.5-kg object is acted on by a force whose x...Ch. 5 - Predict/Explain You drop two balls of equal...Ch. 5 - Predict/Calculate A 42.0-kg parachutist is moving...Ch. 5 - Predict/Calculate In baseball, a pitcher can...Ch. 5 - A major-league catcher gloves a 92 mi/h pitch and...Ch. 5 - Driving home from school one day, you spot a ball...Ch. 5 - Stopping a 747 A 747 jetliner lands and begins to...Ch. 5 - The Ux-versus-time graph for a 1.8-kg object is...Ch. 5 - Predict/Calculate A drag racer crosses the finish...Ch. 5 - Predict/Explain A small car collides with a large...Ch. 5 - Predict/Explain A small car collides with a large...Ch. 5 - As you catch a 0.14-kg ball it accelerates at...Ch. 5 - BIO Woodpecker Concussion Prevention A woodpecker...Ch. 5 - On vacation, your 1400-kg car pulls a 560-kg...Ch. 5 - Predict/Calculate An 85-kg parent and a ?4-kg...Ch. 5 - A force of magnitude 7.50 N pushes three boxes...Ch. 5 - A force of magnitude 7.50 N pushes three boxes...Ch. 5 - Predict/Calculate Two boxes sit side-by-side on a...Ch. 5 - A skateboarder on a ramp is accelerated by a...Ch. 5 - Three objects, A, B, and C, have x and y...Ch. 5 - A farm tractor tows a 3300-kg trailer up a 14...Ch. 5 - A shopper pushes a 7 5-kg shopping cart up a 13...Ch. 5 - Two crewmen pull a rail through a lock, as shown...Ch. 5 - A hockey puck is acted on by one or more forces as...Ch. 5 - To give a 19-kg child a ride, two teenagers pull...Ch. 5 - Predict/Calculate A 65-kg skier speeds down a...Ch. 5 - An object acted on by three forces moves with...Ch. 5 - A train is traveling up a 2 88 incline at a speed...Ch. 5 - The Force Exerted on the Moon In Figure 5-37 we...Ch. 5 - You pull upward on a stuffed suitcase with a force...Ch. 5 - BIO Brain Growth A newborn babys brain grows...Ch. 5 - Suppose a rocket launches with an acceleration of...Ch. 5 - During an episode of turbulence in an airplane you...Ch. 5 - At the bow of a ship on a stormy sea, a crewman...Ch. 5 - Predict/Calculate As part of a physics experiment...Ch. 5 - When you weigh yourself on good old terra firma...Ch. 5 - Predict/Calculate BIO Flight of the Samara A...Ch. 5 - When you lift a bowling ball with a force of 82 N,...Ch. 5 - A 23-kg suitcase is pulled with constant speed by...Ch. 5 - (a) Draw a free-body diagram for the skier in...Ch. 5 - A 9.3-kg child sits in a 3.7-kg high chair. (a)...Ch. 5 - Figure 5-39 shows the normal force N experienced...Ch. 5 - Figure 5-40 shows the normal force N as a function...Ch. 5 - A 5.0-kg bag of potatoes sits on the bottom of a...Ch. 5 - Predict/Calculate (a) Find the normal force...Ch. 5 - Predict/Calculate A gardener mows a lawn with an...Ch. 5 - Figure 5-41 Problems 53 53 An ant walks slowly...Ch. 5 - CE Predict/Explain Riding in an elevator moving...Ch. 5 - CE Predict/Explain Riding in an elevator moving...Ch. 5 - CE Give the direction of the net force acting on...Ch. 5 - CE Predict/Explain You jump out of an airplane and...Ch. 5 - In a tennis serve, a 0.070-kg ball can be...Ch. 5 - BIO Human Heart Force The left ventricle of the...Ch. 5 - A 51 5-kg swimmer with an initial speed of 1.25...Ch. 5 - The ax-versus-time graph for a 2.0-kg object is...Ch. 5 - A skateboarder starts from rest and rolls down a...Ch. 5 - The rotors of a 15,200-kg heavy-lift helicopter...Ch. 5 - As it pulls itself up to a branch, a chimpanzee...Ch. 5 - CE Each of the three identical hockey pucks shown...Ch. 5 - Predict/Calculate The VASIMR Rocket NASA plans to...Ch. 5 - An object of mass m = 5.95 kg has an acceleration...Ch. 5 - At the local grocery store, you push a 14.5-kg...Ch. 5 - BIO Predict/Calculate The Force of Running...Ch. 5 - BIO Predict/Calculate Grasshopper Liftoff To...Ch. 5 - Takeoff from an Aircraft Carrier On an aircraft...Ch. 5 - The Ux-versus-time graph for a 1.8-kg object is...Ch. 5 - Predict/Calculate An archer shoots a 0.024-kg...Ch. 5 - An apple of mass m = 0.13 kg falls out of a tree...Ch. 5 - BIO The Fall of T. rex Paleontologists estimate...Ch. 5 - Deep Space 1 The NASA spacecraft Deep Space 1 was...Ch. 5 - Your groceries are in a bag with paper handles....Ch. 5 - BIO A Leafhopper's Leap The motion of jumping...Ch. 5 - Predict/Calculate At the airport, you observe some...Ch. 5 - Prob. 80GPCh. 5 - Two boxes are at rest on a smooth, horizontal...Ch. 5 - You have been hired to help improve the material...Ch. 5 - Prob. 83GPCh. 5 - A baseball of mass m and initial speed U strikes a...Ch. 5 - When two people push in the same direction on an...Ch. 5 - An air-track cart of mass m1 = 0.14 kg is moving...Ch. 5 - BIO Increasing Safety in a Collision Safety...Ch. 5 - BIO Increasing Safety in a Collision Safety...Ch. 5 - BIO Increasing Safety in a Collision Safety...Ch. 5 - BIO Increasing Safety in a Collision Safety...Ch. 5 - Predict/Calculate Referring to Example 5-8 Suppose...Ch. 5 - Referring to Example 5-8 Suppose the force of 30.0...Ch. 5 - Predict/Calculate Referring to Figure 5-13 Suppose...Ch. 5 - Predict/Calculate Referring to Figure 5-13 Suppose...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. For the reaction shown, calculate how many grams of each product form when the given amount of each reactan...
Introductory Chemistry (6th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
28. As the earth mates, what is the speed of (a) a physics student in Miami. Florida. at latitude 26°, and (b) ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardFor t 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: Fnet=mkv2i, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (b) Find the objects velocity as a function of position.arrow_forward
- Two forces act on a 16-kg object. the first force has a magnitude of 68 N and is directed 24° north of east. the second force is 32 N, 48° north of west. what is the acceleration of the object resulting from the application of these two forces to the object?Acceleration Direction (a) 1.6 m/s² 5.5° north of east (b) 1.9 m/s² 18° north of east (c) 2.4 m/s² 34° north of east (d) 3.6 m/s² 5.5° north of east (e) 4.1 m/s² 52° north of eastarrow_forwardA 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.2 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are us = 0.38 and uk = 0.22. (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8.0 N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N.arrow_forwardA 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.2 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are ls = 0.37 and Uk = 0.22. (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8. N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. N (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N. N Submit Answerarrow_forward
- A 2.30 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 5.316 N and a vertical force P are then applied to the block (see the figure). The coefficients of friction for the block and surface are us = 0.4 and uk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of P is (a)8.00 N and (b)12.0 N. (The upward pull is insufficient to move the block vertically.) (a) Number Units (b) Number Unitsarrow_forwardIn the figure, a crate of mass m = 88 kg is pushed at a constant speed up a frictionless ramp (0 = 30°) by a horizontal force F.The positive direction of an x axis is up the ramp, and the positive direction of a y axis is perpendicular to the ramp. (a) What is the magnitude of F ? (b) What is the magnitude of the normal force on the crate? (a) Number i Units N (b) Number i Unitsarrow_forwardA block that weighs 60 N is intially at rest on a horizontal surface. A horizontal force F1 of magnitude 22 N and a vertical force F2 are then applied to the block. The coefficients of friction for the block and the surface are us = 0.50 and uk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of F2 is (a) 10 N, (b) 20 Narrow_forward
- A block with a mass of m = 12 kg rests on a frictionless surface and is subject to two forces acting on it. The first force is directed in the negative x-direction with a magnitude of F1 = 10.5 N. The second has a magnitude of F2 = 19 N and acts on the body at an angle θ = 21° measured from horizontal 1. Write an expression for the component of net force, Fnet,x, in the x-direction, in terms of the variables given in the problem statement. 2. Write an expression for the magnitude of the normal force, FN, acting on the block, in terms of F2, g, and the other variables of the problem. Assume that the surface it rests on is rigid. 3. Find the block's acceleration in the x-direction, ax, in meters per second squared.arrow_forwardIn the figure, a crate of mass m = 90 kg is pushed at a constant speed up a frictionless ramp (0 = 27°) by a horizontal force F. The positive direction of an x axis is up the ramp, and the positive direction of a y axis is perpendicular to the ramp. (a) What is the magnitude of F? (b) What is the magnitude of the normal force on the crate?arrow_forwardA 2.30 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 5.92 N and a vertical force are then applied to the block (see the figure). The coefficients of friction for the block and surface are us = 0.4 and Uk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of P is (a)7.00 N and (b)10.0 N. (The upward pull is insufficient to move the block vertically.) (a) Number i (b) Number i Units Units P € }arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY