A First Course in Differential Equations with Modeling Applications (MindTap Course List)
11th Edition
ISBN: 9781305965720
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.2, Problem 19E
Eigenvalues and Eigenfunctions
In Problems 9–20 find the eigenvalues and eigenfunctions for the given boundary-value problem.
19. x2y″ + xy′ + λy = 0, y′(1) = 0, y′(e2) = 0
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Test for convergence.
Show that
aj +2
aj
Since h2, therefore, the series is convergent.
2
j
Q.8
P5
Chapter 5 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
Ch. 5.1 - 5.1.1 Spring/Mass systems: Free Undamped Motion A...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A force...Ch. 5.1 - Prob. 7ECh. 5.1 - Prob. 8ECh. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - 5.1.1Spring/Mass Systems: Free Undamped Motion A...
Ch. 5.1 - A mass weighing 64 pounds stretches a spring 0.32...Ch. 5.1 - A mass of 1 slug is suspended from a spring whose...Ch. 5.1 - Prob. 13ECh. 5.1 - 5.1.1 Spring/Mass systems: Free Undamped Motion A...Ch. 5.1 - Solve Problem 13 again, but this time assume that...Ch. 5.1 - Prob. 16ECh. 5.1 - Spring/Mass Systems: Free Undamped Motion Find the...Ch. 5.1 - Prob. 18ECh. 5.1 - Spring/Mass Systems: Free Undamped Motion A model...Ch. 5.1 - 5.1.1Spring/Mass Systems: Free Undamped Motion A...Ch. 5.1 - 5.1.2 Spring/Mass systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass System: Free Damped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion A 4-foot...Ch. 5.1 - A 1-kilogram mass is attached to a spring whose...Ch. 5.1 - A 1-kilogram mass is attached to a spring whose...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion A force of...Ch. 5.1 - After a mass weighing 10 pounds is attached to a...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion A mass...Ch. 5.1 - Prob. 32ECh. 5.1 - Spring/Mass Systems: Free Damped Motion A mass...Ch. 5.1 - A mass of 1 slug is attached to a spring whose...Ch. 5.1 - Spring/Mass Systems: Driven Motion A mass of 1...Ch. 5.1 - In Problem 35 determine the equation of motion if...Ch. 5.1 - Spring/Mass Systems: Driven Motion When a mass of...Ch. 5.1 - Prob. 38ECh. 5.1 - Spring/Mass Systems: Driven Motion A mass m is...Ch. 5.1 - A mass of 100 grams is attached to a spring whose...Ch. 5.1 - Prob. 41ECh. 5.1 - Prob. 42ECh. 5.1 - Series Circuit Analogue (a) Show that the solution...Ch. 5.1 - Compare the result obtained in part (b) of Problem...Ch. 5.1 - (a) Show that x(t) given in part (a) of Problem 43...Ch. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Series Circuit Analogue In Problems 51 and 52 find...Ch. 5.1 - In Problems 51 and 52 find the charge on the...Ch. 5.1 - Series Circuit Analogue Find the steady-state...Ch. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.1 - Prob. 56ECh. 5.1 - Find the charge on the capacitor in an LRC-series...Ch. 5.1 - Show that if L, R, C, and E0 are constant, then...Ch. 5.1 - Show that if L, R, E0, and are constant, then the...Ch. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Prob. 61ECh. 5.1 - Prob. 62ECh. 5.2 - (a) The beam is embedded at its left end and free...Ch. 5.2 - Prob. 2ECh. 5.2 - (a) The beam is embedded at its left end and...Ch. 5.2 - (a) The beam is embedded at its left end and...Ch. 5.2 - Prob. 6ECh. 5.2 - A cantilever beam of length L is embedded at its...Ch. 5.2 - Prob. 8ECh. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - Eigenvalues and Eigenfunctions In Problems 920...Ch. 5.2 - Eigenvalues and Eigenfunctions In Problems 920...Ch. 5.2 - Prob. 20ECh. 5.2 - In Problems 21 and 22 find the eigenvalues and...Ch. 5.2 - In Problems 21 and 22 find the eigenvalues and...Ch. 5.2 - Prob. 23ECh. 5.2 - The critical loads of thin columns depend on the...Ch. 5.2 - Prob. 25ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Additional Boundary-Value Problems Temperature in...Ch. 5.2 - Additional Boundary-Value Problems Temperature In...Ch. 5.2 - Rotation of a Shaft Suppose the x-axis on the...Ch. 5.2 - Prob. 32ECh. 5.2 - Discussion Problems Simple Harmonic Motion The...Ch. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.3 - Find a linearization of the differential equation...Ch. 5.3 - (a) Use the substitution v = dy/dt to solve (13)...Ch. 5.3 - Prob. 15ECh. 5.3 - A uniform chain of length L, measured in feet, is...Ch. 5.3 - Pursuit curve In a naval exercise a ship S1 is...Ch. 5.3 - Pursuit curve In another naval exercise a...Ch. 5.3 - The ballistic pendulum Historically, in order to...Ch. 5.3 - Prob. 21ECh. 5 - If a mass weighing 10 pounds stretches a spring...Ch. 5 - The period of simple harmonic motion of mass...Ch. 5 - The differential equation of a spring/mass system...Ch. 5 - Pure resonance cannot take place in the presence...Ch. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - A free undamped spring/mass system oscillates with...Ch. 5 - A mass weighing 12 pounds stretches a spring 2...Ch. 5 - A force of 2 pounds stretches a spring 1 foot....Ch. 5 - A mass weighing 32 pounds stretches a spring 6...Ch. 5 - A spring with constant k = 2 is suspended in a...Ch. 5 - Prob. 16RECh. 5 - A mass weighing 4 pounds stretches a spring 18...Ch. 5 - Find a particular solution for x + 2x + 2x = A,...Ch. 5 - Prob. 19RECh. 5 - Prob. 20RECh. 5 - A series circuit contains an inductance of L= 1 h,...Ch. 5 - (a) Show that the current i(t) in an LRC-series...Ch. 5 - Consider the boundary-value problem...Ch. 5 - Suppose a mass m lying on a flat dry frictionless...Ch. 5 - Prob. 26RECh. 5 - Suppose the mass m in the spring/mass system in...Ch. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Spring pendulum The rotational form of Newtons...Ch. 5 - Prob. 31RECh. 5 - Galloping Gertie Bridges are good examples of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 8.2 I only need number 2 pleasearrow_forwardProblem 1. Let a e R and u solve the 2nd order linear partial differential equation Uzz – 2auzy – 3a²uyy + Uz + auy = 0. (A) Classify the type of equation for (1.1) according to the value of a. (1.1) (B) Transform (1.1) into the canonical form and solve the equation. | (Hint: the type of equation may depend on the value of a, and you may need to divide the discussion into several cases.)arrow_forward1. Suppose we are given y1(x) and y2(x) (with y1 ≠ y2), which are two different solutions of a nonhomogeneous equation y′′+p(x)y′+q(x)y=g(x)(1)In three steps, describe how to write down the general solution of (1): Step 1: Step 2: Step 3:arrow_forward
- 8.2 I only need number 36 pleasearrow_forward3. A population is modeled by dP = 0.1P dt 50 For simplicity, let us say that there is no "minus" population, that is, P(t) >0 for all t> 0. Answer the following questions. (a) For what values of P is the population increasing? (b) For what values of P is the population decreasing? (c) What are the equilibrim solutions? (d) If P(0) = 20, determine the solution to the initial value problem. (If you print this quiz to solve and if you need additional space to write, you can continue to write your solution on the back.)arrow_forwardProblem 4 (Failure of uniqueness). Show that the following initial value problem has two solutions y = y(t) defined for t > 0: { y' Vy, y(0) = 0. Why does the uniqueness theorem not apply in this case?arrow_forward
- 3. Problem 2.4.42[b): Find an appropriate function N(x, y) such that the differential equation is exact. 1 1 x zyz + )dx + N(x,y)dy= 0 x² + y,arrow_forwardProblem 11. (9.2/22-26) For each of the linear systems in A through E, find the matching phase portrait (to the right). Briefly justify your choices by examining the eigenvalues. A. X(+1)=[-2.5 0.5]x(1) B. X(+1)=[-2.5 0.5]x(1) C. 3 c. dx-[-2.5 0.5]* dx D. [15]* E. dx # - [3 ]x dt 2 1 III o A 2 1- VII O IF 1-2 4 - 110 -1 IV of VI OF -t VIII O -IE I 3arrow_forward2. Consider the equation of simple harmonic motion considered in Example sheet 14: d²x + w²x = 0, dt² where 2 is a positive parameter. 2 (1) (a) Use the substitution y = d to write a first-order system of differential equations equiv- alent to (1) and find the solution (x, y) to the resulting system. [Hint: to derive the system, check section 3.1 of the lecture notes] (b) Assuming that the initial condition for (1) is x = x0 and dr = 0 at t=0, transform this into an appropriate initial condition for the system you have just obtained, and solve the resulting initial value problem. (c) Consider the forced harmonic motion d²x + w² x = et. dt2 Write the equivalent system of first order linear equations and find its general solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY