Student Workbook and Project Manual for Hoffman/Hopewell's Precision Machining Technology
3rd Edition
ISBN: 9798214105710
Author: Peter J. Hoffman and Eric S. Hopewell
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.2, Problem 17RQ
What is an inscribed circle related to carbide inserts?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Auto Controls
The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi.
Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is related
Liquid hexane flows through a counter flow heat exchanger at 5 m3/h as shown in Figure E5.5.The hexane enters the heat exchanger at 90°C. Water, flowing at 5 m3/h, is used to cool the hexane.The water enters the heat exchanger at 15°C. The UA product of the heat exchanger is found to be2.7 kW/K. Determine the outlet temperatures of the hot and cold fluids and the heat transfer ratebetween them using LMTD method.
Determine the fluid outlet temperatures and the heat transfer rate for the counter flow heatexchanger described in Problem 3 using the ε-NTU model. Assume that the properties can beevaluated at the given fluid inlet temperatures.
Chapter 5 Solutions
Student Workbook and Project Manual for Hoffman/Hopewell's Precision Machining Technology
Ch. 5.1 - List the four main parts of the engine lathe.Ch. 5.1 - What are the two main purposes of the lathe...Ch. 5.1 - What part of the lathe is used to set the feed...Ch. 5.1 - Prob. 4RQCh. 5.1 - Prob. 5RQCh. 5.1 - What is the purpose of the leads crew of a lathe?Ch. 5.1 - What two functions can the lathe tailstock...Ch. 5.1 - The standard taper in most lathe tailstocks is the...Ch. 5.1 - Define the swing and the bed length of a lathe.Ch. 5.2 - What is the special name for the type of jaw-type...
Ch. 5.2 - The most common variation of the above chuck has...Ch. 5.2 - Name two material shapes that can be properly held...Ch. 5.2 - List two advantages of using a self-centering...Ch. 5.2 - Name two material shapes that can be properly held...Ch. 5.2 - List three benefits of holding a workpiece between...Ch. 5.2 - List three potential advantages of using an...Ch. 5.2 - List three characteristics of a workpiece that...Ch. 5.2 - What type of mandrel would be ideal for gripping a...Ch. 5.2 - Name the type of tailstock center that raid be...Ch. 5.2 - What two auxiliary devices can be used to...Ch. 5.2 - Explain the differences between the two auxiliary...Ch. 5.2 - Name the device that is used to transmit the...Ch. 5.2 - Which two tool posts are the most efficient if...Ch. 5.2 - What is the major advantage of using...Ch. 5.2 - What direction is a right-hand turning tool...Ch. 5.2 - What is an inscribed circle related to carbide...Ch. 5.2 - Would a 0.010 or 0.031 tool nose radius be...Ch. 5.2 - Which device may be used for either toolholding or...Ch. 5.3 - If a 0.050" depth of cut is taken on the diameter...Ch. 5.3 - A lathe cross slide uses a diameter-reading...Ch. 5.3 - In what units are feed rates measured for lathe...Ch. 5.3 - Are deeper cuts used for roughing or finishing...Ch. 5.3 - Calculate spindle RPM and machining time for...Ch. 5.3 - List three safety precautions related to clothing...Ch. 5.3 - What two materials are most commonly used for...Ch. 5.3 - What feature of a lathe cutting tool has a direct...Ch. 5.3 - Is a left-hand or right-hand tool normally used...Ch. 5.3 - What part of the lathe is used to feed the tool...Ch. 5.3 - When facing, why should the tool not be fed past...Ch. 5.3 - Should a left-hand or right-hand tool be used when...Ch. 5.3 - When and how should chips he removed from the work...Ch. 5.3 - What are two reasons for center drilling on the...Ch. 5.3 - When drilling and reaming on the lathe, how are...Ch. 5.3 - How can hole depth be controlled during drilling...Ch. 5.3 - What are two reasons boring may be selected to...Ch. 5.3 - Why must extra care be taken when performing...Ch. 5.3 - How can a tap be aligned when threading a hole on...Ch. 5.3 - Briefly define form cutting.Ch. 5.3 - How do grooving and cutoff speeds compare to...Ch. 5.3 - How can tool binding be overcome when cutting deep...Ch. 5.3 - List the two basic knurl patterns.Ch. 5.3 - How is knurling different from other lathe...Ch. 5.3 - List and briefly describe the two different types...Ch. 5.4 - The distance of actual contact of two mating...Ch. 5.4 - What feature of mating threads determines the...Ch. 5.4 - How many classes of fit are there in the Unified...Ch. 5.4 - Determine the major diameter limits for the...Ch. 5.4 - Determine the minor diameter limits for the...Ch. 5.4 - Determine the pitch diameter limits for the...Ch. 5.4 - Determine the approximate compound-rest in-feed...Ch. 5.4 - What is the name for the rotating device that...Ch. 5.4 - When threading, what is the reason for feeding the...Ch. 5.4 - Prob. 10RQCh. 5.4 - Why should the depth of cut be reduced for each...Ch. 5.4 - What dimension of the thread is measured by using...Ch. 5.4 - What measuring tool is used to visually inspect...Ch. 5.4 - List two applications of Acme threads.Ch. 5.4 - What type of thread is machined on a tapered...Ch. 5.5 - Briefly define a taper.Ch. 5.5 - What is the difference between an included angle...Ch. 5.5 - What does TPI stand for in relation to tapers?Ch. 5.5 - What are the TPI and TPF of a part with end...Ch. 5.5 - What are the corresponding centerline and included...Ch. 5.5 - What is the corresponding centerline angle of a...Ch. 5.5 - What is the limitation of the tool bit taper...Ch. 5.5 - What must be known to use the compound-rest taper...Ch. 5.5 - What taper turning methods allow use of the lathes...Ch. 5.5 - What two steps can be taken to eliminate backlash...Ch. 5.5 - The TPI specified on a print is 0.030". If...Ch. 5.5 - If TPF is 0.42", how much movement should register...Ch. 5.5 - What is the benefit of using the offset tailstock...Ch. 5.5 - What are two ways to reduce uneven pressure on...Ch. 5.5 - Calculate tailstock setover for a 13.5" part with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Section View - practice Homework 0.5000 3.0000 2,0000 1.0000arrow_forwardDrawing the section view for the following multiview drawing AutoCAD you see the section pratice I need to show how to autocadarrow_forwardA boiler with 80% efficiency produces steam at 40bar and 500 C at a rate of 1.128kg/s. The temperature of the feed water is raised from 25 C to 125 C in the economizer and the ambient air is drawn to the boiler at a rate of 2.70 kg/s at 16 C. The flue gases leave the chimney at rate of 3 kg/s at 150 C with specific heat of 1.01 kJ/kg.K. The dryness fraction of steam collected in the steam drum is 0.95. 1- Determine the heat value of the fuel. 2- The equivalence evaporation. 3- Draw the heat balance sheet.arrow_forward
- A rotating shaft is made of 42 mm by 4 mm thick cold-drawn round steel tubing and has a 6 mm diameter hole drilled transversely through it. The shaft is subjected to a pulsating torque fluctuating from 20 to 160 Nm and a completely reversed bending moment of 200 Nm. The steel tubing has a minimum strength of Sut = 410 MPa (60 ksi). The static stress-concentration factor for the hole is 2.4 for bending and 1.9 for torsion. The maximum operating temperature is 400˚C and a reliability of 99.9% is to be assumed. Find the factor of safety for infinite life using the modified Goodman failure criterion.arrow_forwardI need help with a MATLAB code. This code just keeps running and does not give me any plots. I even reduced the tolerance from 1e-9 to 1e-6. Can you help me fix this? Please make sure your solution runs. % Initial Conditions rev = 0:0.001:2; g1 = deg2rad(1); g2 = deg2rad(3); g3 = deg2rad(6); g4 = deg2rad(30); g0 = deg2rad(0); Z0 = 0; w0 = [0; Z0*cos(g0); -Z0*sin(g0)]; Z1 = 5; w1 = [0; Z1*cos(g1); -Z1*sin(g1)]; Z2 = 11; w2 = [0; Z2*cos(g2); -Z2*sin(g2)]; [v3, psi3, eta3] = Nut_angle(Z2, g2, w2); plot(v3, psi3) function dwedt = K_DDE(~, w_en) % Extracting the initial condtions to a variable % Extracting the initial condtions to a variable w = w_en(1:3); e = w_en(4:7); Z = w_en(8); I = 0.060214; J = 0.015707; x = (J/I) - 1; y = Z - 1; s = Z; % Kinematic Differential Equations dedt = zeros(4,1); dedt(1) = pi*(e(3)*(s-w(2)-1) + e(2)*w(3) + e(4)*w(1)); dedt(2) = pi*(e(4)*(w(2)-1-s) + e(3)*w(1) - e(1)*w(3)); dedt(3) = pi*(-e(1)*(s-w(2)-1) - e(2)*w(1) + e(4)*w(3));…arrow_forwardalpha 1 is not zero alpha 1 can equal alpha 2 use velocity triangle to solve for alpha 1 USE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...…arrow_forward
- 3. Find a basis of eigenvectors and diagonalize. 4 0 -19 7 a. b. 1-42 16 12-20 [21-61arrow_forward2. Find the eigenvalues. Find the corresponding eigenvectors. 6 2 -21 [0 -3 1 3 31 a. 2 5 0 b. 3 0 -6 C. 1 1 0 -2 0 7 L6 6 0 1 1 2. (Hint: λ = = 3)arrow_forwardUSE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),...…arrow_forward
- USE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ...…arrow_forwardThe answer should equal to 1157. Please sent me the solution. Thank you!arrow_forwardBONUS: If the volume of the 8cm x 6.5cm x 6cm Block of Aluminum was 312cm3 before machining, find how much material was removed when the fixture below was machined. +2 2.00 cm 6.00 cm 2.50 cm 6.50 cm 1.00 cm 2.50 cm 11.00 cm 8.00 cm 30 CP 9411 FL.4) (m² 1157 Area of triangle = 1/2*B*H Area of circle = лR² Circumference of a circle = 2πR 6.00 cm 6.50 cm 1.50 cm Radius 1.50 cm 1.00 cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
HOME SHOP JIGS & FIXTURES PART 1, TYPES OF JIGS & ACCESSORIES AND THE THEORIE BEHIND THE TOOLS; Author: THATLAZYMACHINIST;https://www.youtube.com/watch?v=EXYqi42JimI;License: Standard Youtube License