Fundamentals of Engineering Thermodynamics
Fundamentals of Engineering Thermodynamics
8th Edition
ISBN: 9781118832318
Author: MORAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.11, Problem 1E
To determine

The process that would satisfy the conservation of energy principle but not actually be observed in nature.

Expert Solution & Answer
Check Mark

Explanation of Solution

First law of thermodynamics is based on the conservation of energy principle. Satisfaction of first law does not confirm that process will actually occur.

The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems. The law of conservation of energy states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.

Write the expression for first law of thermodynamics.

ΔU=QW

Here, the change in the internal energy is ΔU=QW, heat transfer is Q and work done is W.

It states that the change in the internal energy ΔU of a closed system is equal to the amount of heat Q supplied to the system, minus the amount of work W done by the system on its surroundings. An equivalent statement is that perpetual motion machines of the first kind are impossible.

A cup of hot coffee left in a cooler room eventually cools off. The heat energy of the coffee is converting into the other form of energy. The process is actually is taking place but not actually be observed in the nature.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
01:58
Students have asked these similar questions
Solve this problem and show all of the work
I tried to go through this problem but I don't know what I'm doing wrong can you help me?
Generate the kinematic diagram of the following mechanisms using the given symbols. Then, draw their graphs and calculate their degrees of freedom (DoF) using Gruebler's formula. PUNTO 2. PUNTO 3. !!!

Chapter 5 Solutions

Fundamentals of Engineering Thermodynamics

Ch. 5.11 - Prob. 11ECh. 5.11 - 12. What factors influence the actual coefficient...Ch. 5.11 - Prob. 13ECh. 5.11 - 14. How does the thermal glider (Sec. 5.4) sustain...Ch. 5.11 - 1. A reversible heat pump cycle operates between...Ch. 5.11 - Prob. 2CUCh. 5.11 - 3. Referring to the list of Sec. 5.3.1,...Ch. 5.11 - 4. Uses of the second law of thermodynamics...Ch. 5.11 - Prob. 5CUCh. 5.11 - Prob. 6CUCh. 5.11 - Prob. 7CUCh. 5.11 - Prob. 8CUCh. 5.11 - Prob. 9CUCh. 5.11 - Prob. 10CUCh. 5.11 - Prob. 11CUCh. 5.11 - Prob. 12CUCh. 5.11 - Prob. 13CUCh. 5.11 - Prob. 14CUCh. 5.11 - Prob. 15CUCh. 5.11 - Prob. 16CUCh. 5.11 - Prob. 17CUCh. 5.11 - 18. Referring to Fig. 5.15, if the boiler and...Ch. 5.11 - Prob. 19CUCh. 5.11 - Prob. 20CUCh. 5.11 - Prob. 21CUCh. 5.11 - 22. A cell phone initially has a fully charged...Ch. 5.11 - Prob. 23CUCh. 5.11 - Prob. 24CUCh. 5.11 - Prob. 25CUCh. 5.11 - Prob. 26CUCh. 5.11 - Prob. 27CUCh. 5.11 - 28. As shown in Fig. P5.28C, energy transfer...Ch. 5.11 - 29. As shown in Fig. P5.29C, a rigid, insulated...Ch. 5.11 - 30. As shown in Fig. P5.30C, when the steam in the...Ch. 5.11 - Prob. 31CUCh. 5.11 - Prob. 32CUCh. 5.11 - Prob. 33CUCh. 5.11 - Prob. 34CUCh. 5.11 - Prob. 35CUCh. 5.11 - Prob. 36CUCh. 5.11 - Prob. 37CUCh. 5.11 - Prob. 38CUCh. 5.11 - Prob. 39CUCh. 5.11 - Prob. 40CUCh. 5.11 - Prob. 41CUCh. 5.11 - Prob. 42CUCh. 5.11 - 43. The maximum coefficient of performance of any...Ch. 5.11 - Prob. 44CUCh. 5.11 - Prob. 45CUCh. 5.11 - Prob. 46CUCh. 5.11 - 47. When an isolated system undergoes a process,...Ch. 5.11 - Prob. 48CUCh. 5.11 - Prob. 49CUCh. 5.11 - Prob. 50CUCh. 5.11 - 5.1 Complete the demonstration of the equivalence...Ch. 5.11 - 5.2 Shown in Fig. P5.2 is a proposed system that...Ch. 5.11 - 5.3 Classify the following processes of a closed...Ch. 5.11 - Prob. 4PCh. 5.11 - Prob. 5PCh. 5.11 - Prob. 6PCh. 5.11 - 5.7 Provide the details left to the reader in the...Ch. 5.11 - 5.8 Using the Kelvin–Planck statement of the...Ch. 5.11 - Prob. 9PCh. 5.11 - Prob. 10PCh. 5.11 - Prob. 11PCh. 5.11 - Prob. 12PCh. 5.11 - Prob. 13PCh. 5.11 - Prob. 14PCh. 5.11 - 5.15 To increase the thermal efficiency of a...Ch. 5.11 - Prob. 16PCh. 5.11 - Prob. 17PCh. 5.11 - Prob. 18PCh. 5.11 - 5.19 A power cycle operating at steady state...Ch. 5.11 - 5.20 As shown in Fig. P5.20, a reversible power...Ch. 5.11 - Prob. 21PCh. 5.11 - Prob. 22PCh. 5.11 - Prob. 23PCh. 5.11 - Prob. 24PCh. 5.11 - Prob. 25PCh. 5.11 - Prob. 26PCh. 5.11 - Prob. 27PCh. 5.11 - Prob. 28PCh. 5.11 - Prob. 29PCh. 5.11 - Prob. 30PCh. 5.11 - Prob. 31PCh. 5.11 - Prob. 32PCh. 5.11 - Prob. 33PCh. 5.11 - 5.34 A power cycle operates between hot and cold...Ch. 5.11 - Prob. 35PCh. 5.11 - 5.36 An inventor claims to have developed a power...Ch. 5.11 - Prob. 37PCh. 5.11 - Prob. 38PCh. 5.11 - 5.39 As shown in Fig. P5.39, a system undergoing a...Ch. 5.11 - Prob. 40PCh. 5.11 - Prob. 41PCh. 5.11 - Prob. 42PCh. 5.11 - Prob. 43PCh. 5.11 - 5.44 A reversible refrigeration cycle operates...Ch. 5.11 - Prob. 45PCh. 5.11 - 5.46 A heating system must maintain the interior...Ch. 5.11 - Prob. 47PCh. 5.11 - 5.48 The thermal efficiency of a reversible power...Ch. 5.11 - 5.49 Shown in Fig. P5.49 is a system consisting of...Ch. 5.11 - 5.50 An inventor has developed a refrigerator...Ch. 5.11 - 5.51 An inventor claims to have developed a food...Ch. 5.11 - 5.52 An inventor claims to have developed a...Ch. 5.11 - 5.53 An inventor claims to have devised a...Ch. 5.11 - 5.54 Data are provided for two reversible...Ch. 5.11 - 5.55 By removing energy by heat transfer from its...Ch. 5.11 - 5.56 At steady state, a refrigeration cycle...Ch. 5.11 - Prob. 57PCh. 5.11 - 5.58 At steady state, a refrigeration cycle...Ch. 5.11 - Prob. 59PCh. 5.11 - Prob. 60PCh. 5.11 - Prob. 61PCh. 5.11 - Prob. 62PCh. 5.11 - Prob. 63PCh. 5.11 - 5.64 As shown in Fig P5.64, an air conditioner...Ch. 5.11 - Prob. 65PCh. 5.11 - Prob. 66PCh. 5.11 - 5.68 The refrigerator shown in Fig. P5.68 operates...Ch. 5.11 - Prob. 69PCh. 5.11 - 5.70 By supplying energy at an average rate of...Ch. 5.11 - 5.71 A heat pump with a coefficient of performance...Ch. 5.11 - 5.72 As shown in Fig. P5.72, a heat pump provides...Ch. 5.11 - 5.73 As shown in Fig. P 5.73, a heat pump receives...Ch. 5.11 - Prob. 74PCh. 5.11 - Prob. 75PCh. 5.11 - Prob. 76PCh. 5.11 - Prob. 77PCh. 5.11 - Prob. 78PCh. 5.11 - Prob. 79PCh. 5.11 - Prob. 80PCh. 5.11 - 5.81 A quantity of water within a piston–cylinder...Ch. 5.11 - Prob. 82PCh. 5.11 - 5.83 Two kilograms of air within a piston–cylinder...Ch. 5.11 - Prob. 84PCh. 5.11 - Prob. 85PCh. 5.11 - Prob. 86PCh. 5.11 - Prob. 87PCh. 5.11 - Prob. 88PCh. 5.11 - Prob. 89PCh. 5.11 - 5.90 Figure P5.90 gives the schematic of a vapor...Ch. 5.11 - Prob. 91PCh. 5.11 - Prob. 92PCh. 5.11 - 5.93 As shown in Fig. P5.93, a system executes a...Ch. 5.11 - Prob. 94P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License