Mathematical Statistics with Applications
7th Edition
ISBN: 9781111798789
Author: Dennis O. Wackerly
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.11, Problem 138E
Assume that Y denotes the number of bacteria per cubic centimeter in a particular liquid and that Y has a Poisson distribution with parameter λ. Further assume that λ varies from location to location and has a gamma distribution with parameters α and β, where α is a positive integer. If we randomly select a location, what is the
a expected number of bacteria per cubic centimeter?
b standard deviation of the number of bacteria per cubic centimeter?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
What does the margin of error include? When a margin of error is reported for a survey, it includes
a. random sampling error and other practical difficulties like undercoverage and non-response
b. random sampling error, but not other practical difficulties like undercoverage and nonresponse
c. practical difficulties like undercoverage and nonresponse, but not random smapling error
d. none of the above is corret
solve part a on paper
solve on paper
Chapter 5 Solutions
Mathematical Statistics with Applications
Ch. 5.2 - Contracts for two construction jobs are randomly...Ch. 5.2 - Three balanced coins are tossed independently. One...Ch. 5.2 - Of nine executives in a business firm, four are...Ch. 5.2 - Given here is the joint probability function...Ch. 5.2 - Refer to Example 5.4. The joint density of Y1, the...Ch. 5.2 - Prob. 6ECh. 5.2 - Let Y1 and Y2 have joint density function...Ch. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - An environmental engineer measures the amount (by...
Ch. 5.2 - Suppose that Y1 and Y2 are uniformly distributed...Ch. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - The management at a fast-food outlet is interested...Ch. 5.2 - Let Y1 and Y2 denote the proportions of time (out...Ch. 5.2 - Let (Y1, Y2) denote the coordinates of a point...Ch. 5.2 - Prob. 18ECh. 5.3 - In Exercise 5.1, we determined that the joint...Ch. 5.3 - Refer to Exercise 5.2. a Derive the marginal...Ch. 5.3 - In Exercise 5.3, we determined that the joint...Ch. 5.3 - In Exercise 5.4, you were given the following...Ch. 5.3 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - In Exercise 5.10, we proved that...Ch. 5.3 - Prob. 29ECh. 5.3 - In Exercise 5.12, we were given the following...Ch. 5.3 - In Exercise 5.13, the joint density function of Y1...Ch. 5.3 - Prob. 32ECh. 5.3 - Suppose that Y1 is the total time between a...Ch. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Let Y1 denote the weight (in tons) of a bulk item...Ch. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.4 - Let Y1 and Y2 have joint density function f(y1,...Ch. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - In Exercise 5.3, we determined that the joint...Ch. 5.4 - In Exercise 5.4, you were given the following...Ch. 5.4 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - In Exercise 5.12, we were given the following...Ch. 5.4 - Prob. 57ECh. 5.4 - Suppose that the random variables Y1 and Y2 have...Ch. 5.4 - If Y1 is the total time between a customers...Ch. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Let Y1 and Y2 be independent exponentially...Ch. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.4 - Let F1(y1) and F2(y2) be two distribution...Ch. 5.4 - Prob. 67ECh. 5.4 - Prob. 68ECh. 5.4 - The length of life Y for fuses of a certain type...Ch. 5.4 - A bus arrives at a bus stop at a uniformly...Ch. 5.4 - Prob. 71ECh. 5.6 - In Exercise 5.1, we determined that the joint...Ch. 5.6 - Prob. 73ECh. 5.6 - Refer to Exercises 5.6, 5.24, and 5.50. Suppose...Ch. 5.6 - Prob. 75ECh. 5.6 - Prob. 76ECh. 5.6 - Prob. 77ECh. 5.6 - Prob. 78ECh. 5.6 - Suppose that, as in Exercise 5.11, Y1 and Y2 are...Ch. 5.6 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.6 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.6 - In Exercise 5.38, we determined that the joint...Ch. 5.6 - Prob. 83ECh. 5.6 - In Exercise 5.62, we considered two individuals...Ch. 5.6 - Prob. 85ECh. 5.6 - Prob. 86ECh. 5.6 - Prob. 87ECh. 5.6 - Prob. 88ECh. 5.7 - In Exercise 5.1, we determined that the joint...Ch. 5.7 - Prob. 90ECh. 5.7 - In Exercise 5.8, we derived the fact that...Ch. 5.7 - Prob. 92ECh. 5.7 - Suppose that, as in Exercises 5.11 and 5.79, Y1...Ch. 5.7 - Prob. 94ECh. 5.7 - Prob. 95ECh. 5.7 - Prob. 96ECh. 5.7 - The random variables Y1 and Y2 are such that E(Y1)...Ch. 5.7 - Prob. 98ECh. 5.7 - Prob. 99ECh. 5.7 - Let Z be a standard normal random variable and let...Ch. 5.7 - Prob. 101ECh. 5.8 - A firm purchases two types of industrial...Ch. 5.8 - Prob. 103ECh. 5.8 - Prob. 104ECh. 5.8 - Prob. 105ECh. 5.8 - In Exercise 5.9, we determined that...Ch. 5.8 - In Exercise 5.12, we were given the following...Ch. 5.8 - If Y1 is the total time between a customers...Ch. 5.8 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.8 - Suppose that Y1 and Y2 have correlation...Ch. 5.8 - Prob. 111ECh. 5.8 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.8 - A retail grocery merchant figures that her daily...Ch. 5.8 - For the daily output of an industrial operation,...Ch. 5.8 - Prob. 115ECh. 5.8 - Prob. 116ECh. 5.8 - A population of N alligators is to be sampled in...Ch. 5.8 - Prob. 118ECh. 5.9 - A learning experiment requires a rat to run a maze...Ch. 5.9 - Prob. 120ECh. 5.9 - Refer to Exercise 5.117. Suppose that the number N...Ch. 5.9 - The weights of a population of mice fed on a...Ch. 5.9 - Prob. 123ECh. 5.9 - The typical cost of damages caused by a fire in a...Ch. 5.9 - When commercial aircraft are inspected, wing...Ch. 5.9 - Prob. 126ECh. 5.9 - Prob. 127ECh. 5.10 - Let Y1 and Y2 have a bivariate normal...Ch. 5.10 - Prob. 129ECh. 5.10 - Prob. 130ECh. 5.10 - Prob. 131ECh. 5.10 - Prob. 132ECh. 5.11 - Prob. 133ECh. 5.11 - Prob. 134ECh. 5.11 - In Exercise 5.41, we considered a quality control...Ch. 5.11 - In Exercise 5.42, the number of defects per yard...Ch. 5.11 - In Exercise 5.38, we assumed that Y1, the weight...Ch. 5.11 - Assume that Y denotes the number of bacteria per...Ch. 5.11 - Prob. 139ECh. 5.11 - Prob. 140ECh. 5.11 - Let Y1 have an exponential distribution with mean ...Ch. 5.11 - Prob. 142ECh. 5.11 - Prob. 143ECh. 5 - Prove Theorem 5.9 when Y1 and Y2 are independent...Ch. 5 - Prob. 145SECh. 5 - Prob. 146SECh. 5 - Two friends are to meet at the library. Each...Ch. 5 - Prob. 148SECh. 5 - Prob. 149SECh. 5 - Prob. 150SECh. 5 - The lengths of life Y for a type of fuse has an...Ch. 5 - In the production of a certain type of copper, two...Ch. 5 - Suppose that the number of eggs laid by a certain...Ch. 5 - In a clinical study of a new drug formulated to...Ch. 5 - Prob. 155SECh. 5 - Refer to Exercise 5.86. Suppose that Z is a...Ch. 5 - Prob. 157SECh. 5 - Prob. 158SECh. 5 - Prob. 159SECh. 5 - Prob. 160SECh. 5 - Suppose that we are to observe two independent...Ch. 5 - Prob. 162SECh. 5 - Prob. 163SECh. 5 - Prob. 164SECh. 5 - Prob. 165SECh. 5 - Prob. 166SECh. 5 - Prob. 167SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- solve on paperarrow_forwardsolve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forward
- We consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forward
- Question 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forward
- Let G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forwardProve sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forwardLet G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License