Automotive Technology: A Systems Approach (MindTap Course List)
6th Edition
ISBN: 9781305176423
Author: ERJAVEC
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 51, Problem 5ASRQ
After resurfacing a brake drum: Technician A cleans it using hot water and a lint-free cloth. He then uses compressed air to thoroughly dry it Technician B cleans the drum using a lint-free cloth dipped in a special brake cleaning solvent. She then allows the drum to dry before reinstallation. Who is correct?
- Technician A only
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Problem 1. Rod OAB is rotating counterclockwise with the constant angular velocity of 5 rad/s.
In the position shown, collar P is sliding toward A with the constant speed of 0.8 m/s relative to
the rod. Find the velocity of P and the acceleration of P.
y
B
3
P
300 mm
A
-
Answer: Up = -0.861 − 0.48ĵ™; ā₂ = 4.8î −1.1ĵ
m
A bent tube is attached to a wall with brackets as shown. . A
force of F = 980 lb is applied to the end of the tube with
direction indicated by the dimensions in the figure.
a.) Determine the force vector F in Cartesian components.
→
→
b.) Resolve the force vector F into vector components
parallel and perpendicular to the position vector rDA.
Express each of these vectors in Cartesian components.
2013 Michael Swanbom
cc 10
BY NC SA
g
x
B
A
א
Z
FK
с
кая
b
Values for dimensions on the figure are given in the table
below. Note the figure may not be to scale. Be sure to align
your cartesian unit vectors with the coordinate axes shown in
the figure.
Variable
Value
a
8 in
12 in
с
15 in
36 in
h
23 in
g
28 in
a. F =
b. FDA =
= (
+
k) lb
k) lb
FIDA =
2 +
k) lb
Problem 4. Part 1
100 mm
C
@
PROBLEM 15.160
Pin P slides in the circular slot cut in the plate shown at a
constant relative speed u = 500 mm/s. Assuming that at the
instant shown the angular velocity of the plate is 6 rad/s and
is increasing at the rate of 20 rad/s², determine the
acceleration of pin P when = 90°.
150 mm
is NOT zero. Answer: a = 3.4î −15.1ĵ m/s² )
P
(Hint: u is a constant number, which means that the tangential component of F is zero.
However, the normal component of
Part2. When 0 = 120°, u = 600 mm/s and is increasing at the rate of 30mm/s², determine the
acceleration of pin P.
Chapter 51 Solutions
Automotive Technology: A Systems Approach (MindTap Course List)
Ch. 51 - Name the two methods of attaching brake lining...Ch. 51 - Explain how drum brakes create a self-multiplying...Ch. 51 - List at least five separate types of wear and...Ch. 51 - What is the job of wheel cylinder stops?Ch. 51 - Explain the operation of an integral drum brake...Ch. 51 - In a typical drum brake, which component provides...Ch. 51 - True or False? The name duo-servo drum brake is...Ch. 51 - Prob. 8RQCh. 51 - Which of the following statements about drum brake...Ch. 51 - Brake linings should be replaced when. linings are...
Ch. 51 - In the unapplied position, drum brake shoes arc...Ch. 51 - Duo-servo drum brakes are also known as what type...Ch. 51 - On most vehicles, the automatic adjuster cables or...Ch. 51 - Backing plates, struts, levers, and other metal...Ch. 51 - A buildup of brake dust and dirt between the...Ch. 51 - Technician A says that an out-of-round drum can...Ch. 51 - Technician A says that a grinding noise from a...Ch. 51 - It has been determined that chatter and brake pull...Ch. 51 - Technician A says that the discard dimension of a...Ch. 51 - After resurfacing a brake drum: Technician A...Ch. 51 - Drum linings are badly worn at their heel and toe:...Ch. 51 - When machining brake drums: Technician A tries to...Ch. 51 - While discussing what would happen if too much...Ch. 51 - Technician A checks the surface of the drum for...Ch. 51 - While discussing pull during braking: Technician A...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 5. Disk D of the Geneva mechanism rotates with constant counterclockwise angular velocity wD = 10 rad/s. At the instant when & = 150º, determine (a) the angular velocity of disk S, and (b) the velocity of pin P relative to disk S. (c). the angular acceleration of S. Disk S R=50 mm =135° |1=√ER- Disk D Partial answers: Ō = -4.08 Â rad/s ā¸ = -233 k rad/s²arrow_forwardProblem 3. In the figure below, point A protrudes from link AB and slides in the rod OC. Rod OC is rotating with angular velocity woc = 2 rad/s and aoc = 3 rad/s² in the directions shown. Find the following, remembering to clearly define your axes and the rate of rotation of the frame. a. The angular velocity of link AB and the velocity of A relative to rod OC. m (Answers: @AB is 2.9 rad/s CCW, rxy = .58! toward C) S b. The angular acceleration of link AB and the acceleration of A relative to rod OC. Answers: αAB = 7.12 rad/s² CCW, r = 6.3 m ܐܨ toward C. B C A 30° Фос 400 mm OA=500 mm docarrow_forwardProblem 2. 6 m 30° B PROBLEM 15.164 At the instant shown the length of the boom AB is being decreased at the constant rate of 0.2 m/s and the boom is being lowered at the constant rate of 0.08 rad/s. Determine (a) the velocity of Point B, (b) the acceleration of Point B. Partial answer: a = −0.049î +0.009ĵ m/s²arrow_forward
- A crate is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 121.92 cm above the top of the crate directly over the geometric center of the top surface. Use the given dimensions from the table below to perform the following calculations: →> a.) Determine the position vector IAD that describes rope AD. b.) Compute the unit vector cд that points from point C to point A. c.) If rope AB carries a tension force of magnitude FT = 760 → N, determine the force vector FT that expresses how this force acts on point A. Express each vector in Cartesian components to three significant figures. 2013 Michael Swanbom ↑z BY NC SA b x B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 101.6 cm b 124.46 cm с 38.71 cm a. rдD = + b. ÛCA c. FT= =…arrow_forwardF3 N< Ꮎ 2 F2 -Y F1 There are 3 forces acting on the eye bolt. Force F1 acts on the XY plane has a magnitude of 536 lbf, and the angle of 0 = 38°. Force F2 acts on the YZ plane has a magnitude of 651 lbf, and the angle = 41°. Force F3 has a magnitude of 256 lb, and coordinate. = f direction angles of a 71°, B = 115°, and y = 33°. Determine the resultant force on the eye bolt. FR = ( + k) lbf FR magnitude: FR coordinate direction angle a: deg FR coordinate direction angle ẞ`: deg FR coordinate direction angle y: deg lbfarrow_forwardBall joints connect the ends of each of the struts as shown. The resulting structure supports a force of F = 1925 N which lies in the xz plane. a.) Determine the angle (in degrees) between strut AD and strut AC. b.) Determine the dimension g such that the force Fis →> perpendicular to гAC. 2013 Michael Swanbom CC BY NC SA B b C h/ L 不 g F ୮ d y LLC Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 4.8 cm b 13.4 cm C 11.6 cm d 10.4 cm h 4.4 cm k 14.8 cm a. The angle between strut AD and strut AC is b. The dimension g is deg. cm.arrow_forward
- 13 F1 35 N = 37°. = Determine the resultant force on the eye bolt. FR = ( + FR magnitude: FR coordinate direction angle a: deg FR coordinate direction angle ẞ`: Ꭱ deg FR coordinate direction angle y: deg N k) Narrow_forwardA hollow cylinder with inner radius of 30 mm and outer radius of 50 mm is heated at the inner surface at a rate of 10^5m^2W and dissipated heat by convection from outer surface into a fluid at 80∘C with h=400 m2 KW. There is no energy generation and thermal conductivity of the material is constant at 15mKW. Calculate the temperature of inside and outside surfaces of cylinder.arrow_forwardplease read everything properly... Take 3 4 5 hrs but solve full accurate drawing on bond paper don't use chat gpt etc okkarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningAutomotive TechnologyMechanical EngineeringISBN:9781337794213Author:ERJAVEC, Jack.Publisher:Cengage,
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Automotive Technology
Mechanical Engineering
ISBN:9781337794213
Author:ERJAVEC, Jack.
Publisher:Cengage,
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License